Choice of regressors in nonparametric estimation

Abstract It is well-known that pure nonparametric techniques perform less and less well when the dimension of the regression function increases, because of the sparsness of the data. We attack this curse of dimensionality by proposing a method to select a set of regressors. Optimality with respect to quadratic loss function is shown. Then, simulated examples are presented to illustrate both curse of dimensionality and behaviour of the variables selection procedure.

[1]  Dennis D. Boos,et al.  A Converse to Scheffe's Theorem , 1985 .

[2]  Thomas M. Stoker,et al.  Goodness-of-fit tests for regression using kernel methods , 1994 .

[3]  Jianqing Fan Design-adaptive Nonparametric Regression , 1992 .

[4]  Raymond J. Carroll,et al.  An Asymptotic Theory for Sliced Inverse Regression , 1992 .

[5]  E. Mammen,et al.  Bootstrap methods in nonparametric regression , 1991 .

[6]  Alan J. Miller Subset Selection in Regression , 1992 .

[7]  P. Burman RATES OF CONVERGENCE FOR THE ESTIMATES OF THE OPTIMAL TRANSFORMATIONS OF VARIABLES , 1991 .

[8]  Ker-Chau Li,et al.  Sliced Inverse Regression for Dimension Reduction , 1991 .

[9]  Prabir Burman,et al.  Estimation of generalized additive models , 1990 .

[10]  P. Hall On Projection Pursuit Regression , 1989 .

[11]  Ping Zhang Variable Selection in Nonparametric Regression with Continuous Covariates , 1991 .

[12]  D. Freedman,et al.  How Many Variables Should Be Entered in a Regression Equation , 1983 .

[13]  W. Härdle,et al.  Optimal Bandwidth Selection in Nonparametric Regression Function Estimation , 1985 .

[14]  R. Tibshirani,et al.  Generalized Additive Models , 1991 .

[15]  R. Tibshirani,et al.  Generalized Additive Models: Some Applications , 1987 .

[16]  G. Collomb Estimation Non-paramétrique de la Régression: Revue Bibliographique@@@Estimation Non-parametrique de la Regression: Revue Bibliographique , 1981 .

[17]  L. Breiman,et al.  Submodel selection and evaluation in regression. The X-random case , 1992 .

[18]  Peter J. Bickel,et al.  Variable selection in nonparametric regression with categorical covariates , 1992 .

[19]  Wolfgang Härdle,et al.  Nonparametric Curve Estimation from Time Series , 1989 .

[20]  R. A. Koyak Consistency for ACE-Type Methods , 1990 .

[21]  Leo Breiman,et al.  Fitting additive models to regression data , 1993, Computational Statistics & Data Analysis.

[22]  P. Vieu Quadratic errors for nonparametric estimates under dependence , 1991 .

[23]  H. Müller,et al.  Kernel estimation of regression functions , 1979 .

[24]  C. J. Stone,et al.  The Dimensionality Reduction Principle for Generalized Additive Models , 1986 .

[25]  James Stephen Marron,et al.  Random approximations to some measures of accuracy in nonparametric curve estimation , 1986 .

[26]  C. J. Stone,et al.  Optimal Global Rates of Convergence for Nonparametric Regression , 1982 .

[27]  W. Härdle Applied Nonparametric Regression , 1991 .

[28]  Alan J. Miller,et al.  Subset Selection in Regression , 1991 .

[29]  C. J. Stone,et al.  Additive Regression and Other Nonparametric Models , 1985 .

[30]  John W. Tukey,et al.  A Projection Pursuit Algorithm for Exploratory Data Analysis , 1974, IEEE Transactions on Computers.

[31]  J. Friedman,et al.  Projection Pursuit Regression , 1981 .

[32]  J. Friedman,et al.  Estimating Optimal Transformations for Multiple Regression and Correlation. , 1985 .

[33]  T. Gasser,et al.  A Flexible and Fast Method for Automatic Smoothing , 1991 .

[34]  A. Samarov Exploring Regression Structure Using Nonparametric Functional Estimation , 1993 .

[35]  R. Tibshirani,et al.  Linear Smoothers and Additive Models , 1989 .

[36]  P. Robinson Semiparametric econometrics: A survey , 1988 .