Bioactivity in silica/poly(γ-glutamic acid) sol-gel hybrids through calcium chelation.

[1]  Julian R. Jones,et al.  Effect of calcium source on structure and properties of sol-gel derived bioactive glasses. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[2]  Julian R. Jones,et al.  Role of pH and temperature on silica network formation and calcium incorporation into sol–gel derived bioactive glasses , 2012 .

[3]  Julian R. Jones,et al.  Electrospun silica/PLLA hybrid materials for skeletal regeneration , 2011 .

[4]  D. Brauer,et al.  Fluoride-containing bioactive glasses: Fluoride loss during melting and ion release in tris buffer solution , 2011 .

[5]  Julian R. Jones,et al.  Softening bioactive glass for bone regeneration: sol–gel hybrid materials , 2011 .

[6]  C. Ohtsuki,et al.  Modification of Polyglutamic Acid with Silanol Groups and Calcium Salts to Induce Calcification in a Simulated Body Fluid , 2011, Journal of biomaterials applications.

[7]  Molly M. Stevens,et al.  Silica‐Gelatin Hybrids with Tailorable Degradation and Mechanical Properties for Tissue Regeneration , 2010 .

[8]  Julian R. Jones,et al.  Synthesis of bioactive class II poly(γ-glutamic acid)/silica hybrids for bone regeneration , 2010 .

[9]  C. Seebach,et al.  Comparison of six bone-graft substitutes regarding to cell seeding efficiency, metabolism and growth behaviour of human mesenchymal stem cells (MSC) in vitro. , 2010, Injury.

[10]  Julian R. Jones New trends in bioactive scaffolds: The importance of nanostructure , 2009 .

[11]  Julian R. Jones,et al.  Nanostructure evolution and calcium distribution in sol-gel derived bioactive glass , 2009 .

[12]  C. Ohtsuki,et al.  Apatite-forming ability of polyglutamic acid hydrogels in a body-simulating environment , 2008, Journal of materials science. Materials in medicine.

[13]  Kanji Tsuru,et al.  Synthesis and cytocompatibility of porous chitosan–silicate hybrids for tissue engineering scaffold application , 2008 .

[14]  C. Chiu,et al.  Effects of temperature and pH on adsorption of basic brown 1 by the bacterial biopolymer poly(γ-glutamic acid) , 2008 .

[15]  K. Hsieh,et al.  -Polyglutamic Acid Produced by Bacillus subtilis (natto): Structural Characteristics, Chemical Properties and Biological Functionalities , 2006 .

[16]  Larry L. Hench,et al.  The story of Bioglass® , 2006, Journal of materials science. Materials in medicine.

[17]  Julian R. Jones,et al.  Controlling ion release from bioactive glass foam scaffolds with antibacterial properties , 2006, Journal of materials science. Materials in medicine.

[18]  J. Yang,et al.  Equilibrium and kinetic studies on sorption of basic dyes by a natural biopolymer poly(γ-glutamic acid) , 2006 .

[19]  A. Boccaccini,et al.  Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. , 2006, Biomaterials.

[20]  Tadashi Kokubo,et al.  How useful is SBF in predicting in vivo bone bioactivity? , 2006, Biomaterials.

[21]  Julian R Jones,et al.  Optimising bioactive glass scaffolds for bone tissue engineering. , 2006, Biomaterials.

[22]  L. Hench,et al.  Preparation of bioactive glass-polyvinyl alcohol hybrid foams by the sol-gel method , 2005, Journal of materials science. Materials in medicine.

[23]  Jiang Chang,et al.  pH-compensation effect of bioactive inorganic fillers on the degradation of PLGA , 2005 .

[24]  M Kellomäki,et al.  Self-reinforced composites of bioabsorbable polymer and bioactive glass with different bioactive glass contents. Part I: Initial mechanical properties and bioactivity. , 2005, Acta biomaterialia.

[25]  Kanji Tsuru,et al.  In vitro cytocompatibility of MG63 cells on chitosan-organosiloxane hybrid membranes. , 2005, Biomaterials.

[26]  C. Shaffrey,et al.  Iliac Crest Bone Graft Donor Site Pain After Anterior Lumbar Interbody Fusion: A Prospective Patient Satisfaction Outcome Assessment , 2005, Journal of spinal disorders & techniques.

[27]  S. Cowin,et al.  Bone Mechanics Handbook, 2nd Edition. - , 2003 .

[28]  Kanji Tsuru,et al.  Novel approach to fabricate porous gelatin-siloxane hybrids for bone tissue engineering. , 2002, Biomaterials.

[29]  P. Bahadur,et al.  Principles of Polymer Science , 2002 .

[30]  Larry L Hench,et al.  Third-Generation Biomedical Materials , 2002, Science.

[31]  W. Bonfield,et al.  Initial attachment of osteoblasts to an optimised HAPEX topography. , 2002, Biomaterials.

[32]  G. Hoatson,et al.  Modelling one‐ and two‐dimensional solid‐state NMR spectra , 2002 .

[33]  L. Ren,et al.  Sol-gel preparation and in vitro deposition of apatite on porous gelatin-siloxane hybrids , 2001 .

[34]  J. Currey Ontogenetic Changes in Compact Bone Material Properties , 2001 .

[35]  S. Cowin Ontogenetic Changes in Compact Bone Material Properties , 2001 .

[36]  T. Bugg,et al.  Enzymatic breakdown of poly-gamma-D-glutamic acid in Bacillus licheniformis: identification of a polyglutamyl gamma-hydrolase enzyme. , 2000, Biomacromolecules.

[37]  P Ducheyne,et al.  Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. , 1999, Biomaterials.

[38]  D. Capitani,et al.  Synthesis and 13C CP-MAS NMR Characterization of a New Chitosan-Based Polymeric Network , 1998 .

[39]  J. Mackenzie,et al.  Bioactivity of sol–gel derived organically modified silicates: Part I: In vitro examination , 1997, Journal of materials science. Materials in medicine.

[40]  Y. Ikada,et al.  Body distribution of intravenously administered gelatin with different molecular weights , 1994 .

[41]  Bruce M. Novak,et al.  Hybrid nanocomposite materials―between inorganic glasses and organic polymers , 1993 .

[42]  G. Gomori,et al.  Buffers in the Range of pH 6.5 to 9.6.∗ , 1946, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine.

[43]  Julian R Jones,et al.  Review of bioactive glass: from Hench to hybrids. , 2013, Acta biomaterialia.

[44]  Kanji Tsuru,et al.  Physical, chemical and in vitro biological profile of chitosan hybrid membrane as a function of organosiloxane concentration. , 2009, Acta biomaterialia.

[45]  R. Detsch,et al.  Formation of osteoclast-like cells on HA and TCP ceramics. , 2008, Acta biomaterialia.

[46]  C. Chiu,et al.  Effects of temperature and pH on adsorption of basic brown 1 by the bacterial biopolymer poly(gamma-glutamic acid). , 2008, Bioresource technology.

[47]  M. Kellomäki,et al.  Self-reinforced composites of bioabsorbable polymer and bioactive glass with different bioactive glass contents. Part II: In vitro degradation. , 2008, Acta biomaterialia.

[48]  Ajay Singh,et al.  Developments in the use of Bacillus species for industrial production. , 2004, Canadian journal of microbiology.

[49]  Mark E. Smith,et al.  Multinuclear solid-state NMR of inorganic materials , 2002 .

[50]  S. Hayakawa "MAS NMR study on bioactivity of sol-gel derived organically modified silicates(共著)" , 1996 .