Monte Carlo semantics : robust inference and logical pattern processing with natural language text

This thesis develops several pieces of theory and computational techniques which can be deployed for the purpose of allowing a computer to analyze short pieces of text (e.g. ‘Socrates is a man and every man is mortal.’) and, on the basis of such an analysis, to decide yes/no questions about the text (‘Is Socrates mortal?’). More particularly, the problem is seen as a logical inferencing task. The computer must decide whether or not a logical consequence relation ‘therefore’ holds between the two pieces of text. (‘Socrates is a man and every man is mortal, therefore Socrates is mortal.’) This problem is a pervasive theme in logic and semantics but has also been subject over the last five years to a wave of renewed attention in computational linguistics sparked by the Recognizing Textual Entailment (RTE) challenge. A critical reevaluation of this line of work is presented here which demonstrate several problems concerning the empirical methodology used at RTE and the results derived from it. This thesis is thus more theorydriven, but nevertheless inspired by RTE in that it addresses problems raised by RTE which have not previously received sufficient attention from a theoretical viewpoint, such as the problem of robustness. With this goal in mind, two of the results on Natural Language Reasoning (NLR) established here become particularly important: (1) Assuming the syllogism as a benchmark fragment of NLR, the model theory which underlies NLR is not necessarily a two-valued logic, but it can be the many-valued Łukasiewicz logic. (2) Despite the fact that the syllogism is a logical language of less expressive power than natural language as a whole, a good approximation to NLR can still be obtained by using the method outlined here for rewriting natural language text into syllogistic premises. These two properties of NLR enable the approach to robust inference and logical pattern processing called Monte Carlo semantics, which, in turn, demonstrates that a single logically based theory can account for the semantic informativity of deep techniques using theorem proving and for the robustness of bag-of-words shallow inference.

[1]  Yorick Wilks,et al.  Natural language inference. , 1973 .

[2]  Richard Bergmair,et al.  Monte Carlo Semantics: McPIET at RTE4 , 2008, TAC.

[3]  van Cj Kees Deemter The sorites fallacy and the context-dependence of vague predicates , 1996 .

[4]  José Luis Vicedo González,et al.  TREC: Experiment and evaluation in information retrieval , 2007, J. Assoc. Inf. Sci. Technol..

[5]  Joachim Niehren,et al.  Bridging the gap between underspecification formalisms: hole semantics as dominance constraints , 2002 .

[6]  Nissim Francez,et al.  A ‘Natural Logic’ inference system using the Lambek calculus , 2006, J. Log. Lang. Inf..

[7]  Johan Bos,et al.  Predicate logic unplugged , 1996 .

[8]  Joachim Niehren,et al.  Minimal Recursion Semantics as Dominance Constraints: Translation, Evaluation, and Analysis , 2004, ACL.

[9]  Eric Yeh,et al.  Deciding Entailment and Contradiction with Stochastic and Edit Distance-based Alignment , 2008, TAC.

[10]  Ido Dagan,et al.  Investigating a Generic Paraphrase-Based Approach for Relation Extraction , 2006, EACL.

[11]  F. J. Pelletier,et al.  Some notes concerning fuzzy logics , 1977 .

[12]  László Dezsö,et al.  Universal Grammar , 1981, Certainty in Action.

[13]  J. Rosser,et al.  Fragments of many-valued statement calculi , 1958 .

[14]  Johan Bos,et al.  Recognising Textual Entailment with Robust Logical Inference , 2005, MLCW.

[15]  Stefan Thater,et al.  Scope Underspecification with Tree Descriptions: Theory and Practice , 2011, Resource-Adaptive Cognitive Processes.

[16]  Kent Bach Do Belief Reports Report Beliefs , 1997 .

[17]  Lawrence S. Moss,et al.  Syllogistic Logic with Complements , 2011 .

[18]  Ian Pratt-Hartmann,et al.  Fragments of Language , 2004, J. Log. Lang. Inf..

[19]  Eric Yeh,et al.  Learning Alignments and Leveraging Natural Logic , 2007, ACL-PASCAL@ACL.

[20]  Ann A. Copestake,et al.  Invited Talk: Slacker Semantics: Why Superficiality, Dependency and Avoidance of Commitment can be the Right Way to Go , 2009, EACL.

[21]  D. Davidson On saying that , 1968, Synthese.

[22]  Allan Third,et al.  More Fragments of Language , 2006, Notre Dame J. Formal Log..

[23]  Johan Bos Towards Wide-Coverage Semantic Interpretation , 2005 .

[24]  Johan Bos,et al.  Linguistically Motivated Large-Scale NLP with C&C and Boxer , 2007, ACL.

[25]  Ian Pratt-Hartmann,et al.  A Two-Variable Fragment of English , 2002, J. Log. Lang. Inf..

[26]  FlickingerDan On building a more efficient grammar by exploiting types , 2000 .

[27]  A. Tarski Fundamentale Begriffe der Methodologie der deduktiven Wissenschaften. I , 1930 .

[28]  C. Chang,et al.  Algebraic analysis of many valued logics , 1958 .

[29]  Christopher D. Manning LOCAL TEXTUAL INFERENCE : IT'S HARD TO CIRCUMSCRIBE , BUT YOU KNOW IT WHEN YOU SEE IT - AND NLP NEEDS IT , 2006 .

[30]  Ann Copestake Semantic Composition with (Robust) Minimal Recursion Semantics , 2007, ACL 2007.

[31]  Advaith Siddharthan,et al.  Syntactic Simplification and Text Cohesion , 2006 .

[32]  Richard Bergmair,et al.  Closed Domain Question Answering using Fuzzy Semantics , 2006 .

[33]  Mary Dalrymple,et al.  LFG Semantics via Constraints , 1993, EACL.

[34]  Carol Peters,et al.  Advances in Multilingual and Multimodal Information Retrieval, 8th Workshop of the Cross-Language Evaluation Forum, CLEF 2007, Budapest, Hungary, September 19-21, 2007, Revised Selected Papers , 2008, CLEF.

[35]  Adam Kilgarriff,et al.  of the European Chapter of the Association for Computational Linguistics , 2006 .

[36]  Dan Flickinger,et al.  Minimal Recursion Semantics: An Introduction , 2005 .

[37]  Leila Kosseim,et al.  Using Ontology Alignment for the TAC RTE Challenge , 2008, TAC.

[38]  Ido Dagan,et al.  The Third PASCAL Recognizing Textual Entailment Challenge , 2007, ACL-PASCAL@ACL.

[39]  Francis Jeffry Pelletier,et al.  Representation and Inference for Natural Language: A First Course in Computational Semantics , 2005, Computational Linguistics.

[40]  Richard Montague,et al.  ENGLISH AS A FORMAL LANGUAGE , 1975 .

[41]  Lauri Karttunen,et al.  Local Textual Inference: Can it be Defined or Circumscribed? , 2005, EMSEE@ACL.

[42]  Alex Lascarides,et al.  An Algebra for Semantic Construction in Constraint-based Grammars , 2001, ACL.

[43]  Lawrence S. Moss,et al.  LOGICS FOR THE RELATIONAL SYLLOGISTIC , 2008, The Review of Symbolic Logic.

[44]  Jan Łukasiewicz Aristotle's Syllogistic From the Standpoint of Modern Formal Logic , 1957 .

[45]  Joachim Niehren,et al.  Bridging the Gap Between Underspecification Formalisms: Minimal Recursion Semantics as Dominance Constraints , 2003, ACL.

[46]  C. Chang,et al.  A new proof of the completeness of the Łukasiewicz axioms , 1959 .

[47]  Ido Dagan,et al.  The Third PASCAL Recognizing Textual Entailment Challenge , 2007, ACL-PASCAL@ACL.

[48]  Johan Bos,et al.  Recognising Textual Entailment with Logical Inference , 2005, HLT.

[49]  Ellen M. Voorhees,et al.  Contradictions and Justifications: Extensions to the Textual Entailment Task , 2008, ACL.

[50]  Carol Peters,et al.  Evaluating Systems for Multilingual and Multimodal Information Access: 9th Workshop of the Cross-Language Evaluation Forum, CLEF 2008, Aarhus, Denmark, ... Applications, incl. Internet/Web, and HCI) , 2009 .

[51]  Stefan Thater,et al.  An Improved Redundancy Elimination Algorithm for Underspecified Representations , 2006, ACL.

[52]  Ido Dagan,et al.  The Fourth PASCAL Recognizing Textual Entailment Challenge , 2008, TAC.

[53]  Roy Bar-Haim,et al.  The Second PASCAL Recognising Textual Entailment Challenge , 2006 .

[54]  Christiane Fellbaum,et al.  Book Reviews: WordNet: An Electronic Lexical Database , 1999, CL.

[55]  Gottlob Frege,et al.  Begriffsschrift und andere Aufsätze , 1964 .

[56]  Christopher D. Manning,et al.  Natural Logic for Textual Inference , 2007, ACL-PASCAL@ACL.

[57]  Richard Bergmair,et al.  A Proposal on Evaluation Measures for RTE , 2009, TextInfer@ACL.

[58]  Ulrich Bodenhofer,et al.  Syntax-driven Analysis of Context-free Languages with Respect to Fuzzy Relational Semantics , 2006, 2006 IEEE International Conference on Fuzzy Systems.

[59]  Kees van Deemter Vagueness Facilitates Search , 2009, Amsterdam Colloquium on Logic, Language and Meaning.

[60]  Lotfi A. Zadeh,et al.  Fuzzy Logic , 2009, Encyclopedia of Complexity and Systems Science.

[61]  Beata Beigman Klebanov,et al.  Squibs: From Annotator Agreement to Noise Models , 2009, CL.

[62]  Stefan Thater,et al.  Efficient Solving and Exploration of Scope Ambiguities , 2005, ACL.

[63]  Kees van Deemter Not Exactly: In Praise of Vagueness , 2010 .

[64]  K. Markert,et al.  Combining Shallow and Deep NLP Methods for Recognizing Textual Entailment , 2005 .

[65]  S. Gottwald A Treatise on Many-Valued Logics , 2001 .

[66]  C. C. Chang Proof of an axiom of Łukasiewicz , 1958 .

[67]  Richard Montague,et al.  The Proper Treatment of Quantification in Ordinary English , 1973 .

[68]  Z. Harris A Theory of Language and Information: A Mathematical Approach , 1991 .

[69]  Charles Elkan,et al.  The paradoxical success of fuzzy logic , 1993, IEEE Expert.

[70]  Lawrence S. Moss,et al.  Completeness Theorems for Syllogistic Fragments , 2007 .

[71]  M. Felisa Verdejo,et al.  Overview of the Answer Validation Exercise 2007 , 2007, CLEF.

[72]  J.F.A.K. van Benthem,et al.  Language in Action: Categories, Lambdas and Dynamic Logic , 1997 .

[73]  Ted Briscoe,et al.  Corpus Annotation for Parser Evaluation , 1999, ArXiv.

[74]  Ido Dagan,et al.  The Sixth PASCAL Recognizing Textual Entailment Challenge , 2009, TAC.

[75]  Robert Givan,et al.  Natural Language Syntax and First-Order Inference , 1992, Artificial Intelligence.

[76]  Adam Lopez,et al.  Proceedings of the 22nd International Conference on Computational Linguistics (Coling 2008) , 2008, COLING 2008.

[77]  Andrew Hickl,et al.  Using Discourse Commitments to Recognize Textual Entailment , 2008, COLING.

[78]  K. Markert,et al.  When logical inference helps determining textual entailment ( and when it doesn ’ t ) , .

[79]  Stephen Pulman,et al.  Using the Framework , 1996 .

[80]  Sanda M. Harabagiu,et al.  Methods for Using Textual Entailment in Open-Domain Question Answering , 2006, ACL.

[81]  Manfred Pinkal,et al.  Logik und Lexikon : die Semantik des Unbestimmten , 1985 .

[82]  Marcel Crabbé The formal theory of syllogisms , 2003 .

[83]  Leila Kosseim,et al.  AORTE for Recognizing Textual Entailment , 2009, CICLing.

[84]  Yi Zhang,et al.  Recognizing Textual Relatedness with Predicate-Argument Structures , 2009, EMNLP.

[85]  C. A. Meredith The dependence of an axiom of Łukasiewicz , 1958 .

[86]  Alfred Tarski,et al.  Der Wahrheitsbegriff in den formalisierten Sprachen , 1935 .

[87]  Günter Neumann,et al.  An Accuracy-Oriented Divide-and-Conquer Strategy for Recognizing Textual Entailment , 2008, TAC.