Restricted optimality for phase I clinical trials
暂无分享,去创建一个
William F. Rosenberger | Nancy Flournoy | W. Rosenberger | N. Flournoy | Vladimir A. Mats | V. A. Mats
[1] I. Ford,et al. The Use of a Canonical Form in the Construction of Locally Optimal Designs for Non‐Linear Problems , 1992 .
[2] John O'Quigley,et al. Consistency of continual reassessment method under model misspecification , 1996 .
[3] G. Elfving. Optimum Allocation in Linear Regression Theory , 1952 .
[4] W. J. Studden,et al. Geometry of E-Optimality , 1993 .
[5] R. Sitter,et al. Optimal designs for the logit and probit models for binary data , 1997 .
[6] H. Dette. Elfving's Theorem for $D$-Optimality , 1993 .
[7] Nancy Flournoy,et al. Random Walks for Quantile Estimation , 1994 .
[8] W. J. Studden,et al. Theory Of Optimal Experiments , 1972 .
[9] S. Durham,et al. A random walk rule for phase I clinical trials. , 1997, Biometrics.
[10] Nancy Flournoy,et al. UP-AND-DOWN DESIGNS II: EXACT TREATMENT MOMENTS , 1995 .
[11] H. Dette. A new interpretation of optimality forE-optimal designs in linear regression models , 1993 .
[12] Weng Kee Wong,et al. Designing Studies for Dose Response , 1996 .
[13] Minimax Designs in Linear Regression Models , 1995 .
[14] D. L. McLeish,et al. Sequential Designs in Bioassay , 1990 .
[15] H. Chernoff. Sequential Analysis and Optimal Design , 1987 .
[16] C. F. Wu,et al. Optimal designs for binary response experiments: Fieller, D, and A criteria , 1993 .
[17] C. F. Wu,et al. Efficient Sequential Designs with Binary Data , 1985 .
[18] Holger Dette,et al. E-optimal designs for linear and nonlinear models with two parameters , 1994 .
[19] J O'Quigley,et al. Continual reassessment method: a practical design for phase 1 clinical trials in cancer. , 1990, Biometrics.
[20] J. Kiefer,et al. The Equivalence of Two Extremum Problems , 1960, Canadian Journal of Mathematics.
[21] Randy R. Sitter,et al. On the Accuracy of Fieller Intervals for Binary Response Data , 1993 .
[22] William F. Rosenberger,et al. Asymptotic normality of maximum likelihood estimators from multiparameter response-driven designs , 1997 .
[23] Byron J. T. Morgan. Analysis of Quantal Response Data , 1992 .