Restricted optimality for phase I clinical trials

[1]  I. Ford,et al.  The Use of a Canonical Form in the Construction of Locally Optimal Designs for Non‐Linear Problems , 1992 .

[2]  John O'Quigley,et al.  Consistency of continual reassessment method under model misspecification , 1996 .

[3]  G. Elfving Optimum Allocation in Linear Regression Theory , 1952 .

[4]  W. J. Studden,et al.  Geometry of E-Optimality , 1993 .

[5]  R. Sitter,et al.  Optimal designs for the logit and probit models for binary data , 1997 .

[6]  H. Dette Elfving's Theorem for $D$-Optimality , 1993 .

[7]  Nancy Flournoy,et al.  Random Walks for Quantile Estimation , 1994 .

[8]  W. J. Studden,et al.  Theory Of Optimal Experiments , 1972 .

[9]  S. Durham,et al.  A random walk rule for phase I clinical trials. , 1997, Biometrics.

[10]  Nancy Flournoy,et al.  UP-AND-DOWN DESIGNS II: EXACT TREATMENT MOMENTS , 1995 .

[11]  H. Dette A new interpretation of optimality forE-optimal designs in linear regression models , 1993 .

[12]  Weng Kee Wong,et al.  Designing Studies for Dose Response , 1996 .

[13]  Minimax Designs in Linear Regression Models , 1995 .

[14]  D. L. McLeish,et al.  Sequential Designs in Bioassay , 1990 .

[15]  H. Chernoff Sequential Analysis and Optimal Design , 1987 .

[16]  C. F. Wu,et al.  Optimal designs for binary response experiments: Fieller, D, and A criteria , 1993 .

[17]  C. F. Wu,et al.  Efficient Sequential Designs with Binary Data , 1985 .

[18]  Holger Dette,et al.  E-optimal designs for linear and nonlinear models with two parameters , 1994 .

[19]  J O'Quigley,et al.  Continual reassessment method: a practical design for phase 1 clinical trials in cancer. , 1990, Biometrics.

[20]  J. Kiefer,et al.  The Equivalence of Two Extremum Problems , 1960, Canadian Journal of Mathematics.

[21]  Randy R. Sitter,et al.  On the Accuracy of Fieller Intervals for Binary Response Data , 1993 .

[22]  William F. Rosenberger,et al.  Asymptotic normality of maximum likelihood estimators from multiparameter response-driven designs , 1997 .

[23]  Byron J. T. Morgan Analysis of Quantal Response Data , 1992 .