Robust fuzzy mappings for QSAR studies.

[1]  C. Hansch,et al.  p-σ-π Analysis. A Method for the Correlation of Biological Activity and Chemical Structure , 1964 .

[2]  Lotfi A. Zadeh,et al.  Outline of a New Approach to the Analysis of Complex Systems and Decision Processes , 1973, IEEE Trans. Syst. Man Cybern..

[3]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[4]  H Ichikawa,et al.  Neural networks applied to quantitative structure-activity relationship analysis. , 1990, Journal of medicinal chemistry.

[5]  Tomoo Aoyama,et al.  Obtaining the correlation indices between drug activity and structural parameters using a neural network , 1991 .

[6]  Philip R. Thrift,et al.  Fuzzy Logic Synthesis with Genetic Algorithms , 1991, ICGA.

[7]  Jerry M. Mendel,et al.  Generating fuzzy rules by learning from examples , 1992, IEEE Trans. Syst. Man Cybern..

[8]  David J. C. MacKay,et al.  Bayesian Interpolation , 1992, Neural Computation.

[9]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[10]  H Ichikawa,et al.  How to see characteristics of structural parameters in QSAR analysis: descriptor mapping using neural networks. , 1993, SAR and QSAR in environmental research.

[11]  J. Liska,et al.  Complete design of fuzzy logic systems using genetic algorithms , 1994, Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference.

[12]  R. Jackson,et al.  Update on computer-aided drug design. , 1995, Current opinion in biotechnology.

[13]  Zongru Guo Structure-activity relationships in medicinal chemistry: Development of drug candidates from lead compounds , 1995 .

[14]  Francisco Herrera,et al.  GENERATING FUZZY RULES FROM EXAMPLES USING GENETIC ALGORITHMS , 1995 .

[15]  J. J. Shann,et al.  A fuzzy neural network for rule acquiring on fuzzy control systems , 1995 .

[16]  Hisao Ishibuchi,et al.  A simple but powerful heuristic method for generating fuzzy rules from numerical data , 1997, Fuzzy Sets Syst..

[17]  E. Mizutani,et al.  Neuro-Fuzzy and Soft Computing-A Computational Approach to Learning and Machine Intelligence [Book Review] , 1997, IEEE Transactions on Automatic Control.

[18]  Robert Babuska,et al.  Fuzzy Modeling for Control , 1998 .

[19]  Rudolf Kruse,et al.  A neuro-fuzzy approach to obtain interpretable fuzzy systems for function approximation , 1998, 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36228).

[20]  Raúl Pérez,et al.  Completeness and consistency conditions for learning fuzzy rules , 1998, Fuzzy Sets Syst..

[21]  Frank R. Burden,et al.  New QSAR Methods Applied to Structure-Activity Mapping and Combinatorial Chemistry , 1999, J. Chem. Inf. Comput. Sci..

[22]  D. Manallack,et al.  Neural networks in drug discovery: Have they lived up to their promise? , 1999 .

[23]  F. Burden,et al.  Robust QSAR models using Bayesian regularized neural networks. , 1999, Journal of medicinal chemistry.

[24]  Klaus L. E. Kaiser Quantitative Structure—Activity Relationships in Chemistry , 1999 .

[25]  Frank R. Burden,et al.  Use of Automatic Relevance Determination in QSAR Studies Using Bayesian Neural Networks , 2000, J. Chem. Inf. Comput. Sci..

[26]  Dan Simon,et al.  Design and rule base reduction of a fuzzy filter for the estimation of motor currents , 2000, Int. J. Approx. Reason..

[27]  Meng Joo Er,et al.  Dynamic fuzzy neural networks-a novel approach to function approximation , 2000, IEEE Trans. Syst. Man Cybern. Part B.

[28]  Dan Simon,et al.  Training fuzzy systems with the extended Kalman filter , 2002, Fuzzy Sets Syst..

[29]  Ferenc Szeifert,et al.  Modified Gath-Geva fuzzy clustering for identification of Takagi-Sugeno fuzzy models , 2002, IEEE Trans. Syst. Man Cybern. Part B.

[30]  Norbert Stoll,et al.  Robust Solution to Fuzzy Identification Problem with Uncertain Data by Regularization , 2004, Fuzzy Optim. Decis. Mak..

[31]  David A Winkler,et al.  Neural networks as robust tools in drug lead discovery and development , 2004, Molecular biotechnology.

[32]  Paola Gramatica,et al.  Validated QSAR Prediction of OH Tropospheric Degradation of VOCs: Splitting into Training-Test Sets and Consensus Modeling , 2004, J. Chem. Inf. Model..

[33]  Norbert Stoll,et al.  An energy-gain bounding approach to robust fuzzy identification , 2006, Autom..

[34]  Norbert Stoll,et al.  A robust design criterion for interpretable fuzzy models with uncertain data , 2006, IEEE Transactions on Fuzzy Systems.

[35]  Norbert Stoll,et al.  A min-max approach to fuzzy clustering, estimation, and identification , 2006, IEEE Transactions on Fuzzy Systems.