An Algebra of Hierarchical Graphs

We define an algebraic theory of hierarchical graphs, whose axioms characterise graph isomorphism: two terms are equated exactly when they represent the same graph. Our algebra can be understood as a high-level language for describing graphs with a node-sharing, embedding structure, and it is then well suited for defining graphical representations of software models where nesting and linking are key aspects.

[1]  Roberto Bruni,et al.  Ten virtues of structured graphs , 2009, Electron. Commun. Eur. Assoc. Softw. Sci. Technol..

[2]  Vladimiro Sassone,et al.  Typed polyadic pi-calculus in bigraphs , 2006, PPDP '06.

[3]  S. McBride,et al.  and references , 2000 .

[4]  Marino Miculan,et al.  An Algebra for Directed Bigraphs , 2008, TERMGRAPH@ETAPS.

[5]  Roberto Bruni,et al.  Service Oriented Architectural Design , 2007, TGC.

[6]  Brian Campbell,et al.  Amortised Memory Analysis Using the Depth of Data Structures , 2009, ESOP.

[7]  Reiko Heckel,et al.  Algebraic Approaches to Graph Transformation - Part I: Basic Concepts and Double Pushout Approach , 1997, Handbook of Graph Grammars.

[8]  Hartmut Ehrig,et al.  Deriving Bisimulation Congruences in the DPO Approach to Graph Rewriting , 2004, FoSSaCS.

[9]  Roberto Bruni,et al.  Theoretical foundations for compensations in flow composition languages , 2005, POPL '05.

[10]  Perdita Stevens,et al.  Modelling Recursive Calls with UML State Diagrams , 2003, FASE.

[11]  Gian Luigi Ferrari,et al.  Tile Formats for Located and Mobile Systems , 2000, Inf. Comput..

[12]  Berthold Hoffmann,et al.  Hierarchical Graph Transformation , 2000, J. Comput. Syst. Sci..

[13]  Artur Boronat,et al.  What Is a Multi-modeling Language? , 2008, WADT.

[14]  Hartmut Ehrig,et al.  Deriving bisimulation congruences in the DPO approach to graph rewriting with borrowed contexts , 2006, Mathematical Structures in Computer Science.

[15]  Hans-Jörg Kreowski,et al.  Abstract hierarchical graph transformation , 2005, Mathematical Structures in Computer Science.

[16]  Kousha Etessami,et al.  Optimizing Büchi Automata , 2000, CONCUR.

[17]  Davide Sangiorgi,et al.  The Pi-Calculus - a theory of mobile processes , 2001 .

[18]  Hartmut Ehrig,et al.  Handbook of graph grammars and computing by graph transformation: vol. 3: concurrency, parallelism, and distribution , 1999 .

[19]  Robin Milner,et al.  Bigraphs and mobile processes , 2003 .

[20]  Roberto Bruni,et al.  Sessions and Pipelines for Structured Service Programming , 2008, FMOODS.

[21]  Wojciech Palacz Algebraic hierarchical graph transformation , 2004, J. Comput. Syst. Sci..

[22]  Fabio Gadducci,et al.  Term Graph Rewriting for the pi-Calculus , 2003, APLAS.

[23]  Roberto Bruni,et al.  Style-Based Architectural Reconfigurations , 2008, Bull. EATCS.

[24]  Robin Milner,et al.  Deriving Bisimulation Congruences for Reactive Systems , 2000, CONCUR.

[25]  Artur Boronat,et al.  An Algebraic Semantics for MOF , 2008, FASE.

[26]  Robin Milner,et al.  Pure bigraphs: Structure and dynamics , 2006, Inf. Comput..

[27]  Roberto Bruni,et al.  Hierarchical Design Rewriting with Maude , 2008, WRLA.

[28]  Francesca Rossi,et al.  An Abstract Machine for Concurrent Modular Systems: CHARM , 1994, Theor. Comput. Sci..

[29]  Marcello M. Bonsangue,et al.  Formal Methods for Components and Objects - 8th International Symposium, FMCO 2009, Eindhoven, The Netherlands, November 4-6, 2009. Revised Selected Papers , 2010, FMCO.

[30]  Roberto Bruni,et al.  A Graph Syntax for Processes and Services , 2009, WS-FM.

[31]  Fabio Gadducci,et al.  An Algebraic Presentation of Term Graphs, via GS-Monoidal Categories , 1999, Appl. Categorical Struct..

[32]  Annegret Habel,et al.  Hyperedge Replacement, Graph Grammars , 1997, Handbook of Graph Grammars.

[33]  Alan Bundy,et al.  Constructing Induction Rules for Deductive Synthesis Proofs , 2006, CLASE.

[34]  Ivan Lanese,et al.  Synchronised Hyperedge Replacement as a Model for Service Oriented Computing , 2005, FMCO.

[35]  Marino Miculan,et al.  Graph Algebras for Bigraphs , 2010, Electron. Commun. Eur. Assoc. Softw. Sci. Technol..