STIM proteins and the endoplasmic reticulum-plasma membrane junctions.

Eukaryotic organelles can interact with each other through stable junctions where the two membranes are kept in close apposition. The junction that connects the endoplasmic reticulum to the plasma membrane (ER-PM junction) is unique in providing a direct communication link between the ER and the PM. In a recently discovered signaling process, STIM (stromal-interacting molecule) proteins sense a drop in ER Ca(2+) levels and directly activate Orai PM Ca(2+) channels across the junction space. In an inverse process, a voltage-gated PM Ca(2+) channel can directly open ER ryanodine-receptor Ca(2+) channels in striated-muscle cells. Although ER-PM junctions were first described 50 years ago, their broad importance in Ca(2+) signaling, as well as in the regulation of cholesterol and phosphatidylinositol lipid transfer, has only recently been realized. Here, we discuss research from different fields to provide a broad perspective on the structures and unique roles of ER-PM junctions in controlling signaling and metabolic processes.

[1]  A. Claude,et al.  A STUDY OF TISSUE CULTURE CELLS BY ELECTRON MICROSCOPY , 1945, The Journal of experimental medicine.

[2]  G. Palade,et al.  STUDIES ON THE ENDOPLASMIC RETICULUM : III. ITS FORM AND DISTRIBUTION IN STRIATED MUSCLE CELLS , 1957 .

[3]  J. Rosenbluth SUBSURFACE CISTERNS AND THEIR RELATIONSHIP TO THE NEURONAL PLASMA MEMBRANE , 1962, The Journal of cell biology.

[4]  G. Gabella Caveolae intracellulares and sarcoplasmic reticulum in smooth muscle. , 1971, Journal of cell science.

[5]  A. Somlyo,et al.  SARCOPLASMIC RETICULUM AND EXCITATION-CONTRACTION COUPLING IN MAMMALIAN SMOOTH MUSCLES , 1972, The Journal of cell biology.

[6]  C. Franzini-armstrong,et al.  Studies of the triad. 3. Structure of the junction in fast twitch fibers. , 1972, Tissue & cell.

[7]  M. Bond,et al.  Calcium content of mitochondria and endoplasmic reticulum in liver frozen rapidly in vivo , 1985, Nature.

[8]  J. Putney,et al.  A model for receptor-regulated calcium entry. , 1986, Cell calcium.

[9]  K. Campbell,et al.  Structural evidence for direct interaction between the molecular components of the transverse tubule/sarcoplasmic reticulum junction in skeletal muscle , 1988, The Journal of cell biology.

[10]  J. Pringle,et al.  Functions of microtubules in the Saccharomyces cerevisiae cell cycle , 1988, The Journal of cell biology.

[11]  P. K. Hepler,et al.  Cortical endoplasmic reticulum in plants , 1990 .

[12]  F. Rieger,et al.  Muscle fibers from dysgenic mouse in vivo lack a surface component of peripheral couplings. , 1991, Developmental biology.

[13]  Characterization of the Saccharomyces Golgi complex through the cell cycle by immunoelectron microscopy. , 1992 .

[14]  B. Flucher Structural analysis of muscle development: transverse tubules, sarcoplasmic reticulum, and the triad. , 1992, Developmental biology.

[15]  M. Goebl,et al.  Localization of Drosophila retinal degeneration B, a membrane- associated phosphatidylinositol transfer protein , 1993, The Journal of cell biology.

[16]  C. Slaughter,et al.  Primary structure and topological analysis of a skeletal muscle-specific junctional sarcoplasmic reticulum glycoprotein (triadin). , 1993, The Journal of biological chemistry.

[17]  E. Suzuki,et al.  Immunolocalization of a Drosophila phosphatidylinositol transfer protein (rdgB) in normal and rdgA mutant photoreceptor cells with special reference to the subrhabdomeric cisternae. , 1994, Journal of electron microscopy.

[18]  L. Jones,et al.  Purification, Primary Structure, and Immunological Characterization of the 26-kDa Calsequestrin Binding Protein (Junctin) from Cardiac Junctional Sarcoplasmic Reticulum (*) , 1995, The Journal of Biological Chemistry.

[19]  B. Walz,et al.  Structure and cellular physiology of Ca2+ stores in invertebrate photoreceptors. , 1995, Cell calcium.

[20]  Wah Chiu,et al.  Two structural configurations of the skeletal muscle calcium release channel , 1996, Nature Structural Biology.

[21]  K. Oritani,et al.  Identification of stromal cell products that interact with pre-B cells , 1996, The Journal of cell biology.

[22]  R. Overall,et al.  A model of the macromolecular structure of plasmodesmata , 1996 .

[23]  M. Hoth,et al.  Mitochondrial Regulation of Store-operated Calcium Signaling in T Lymphocytes , 1997, The Journal of cell biology.

[24]  D. Hyde,et al.  The Phosphatidylinositol Transfer Protein Domain of Drosophila Retinal Degeneration B Protein Is Essential for Photoreceptor Cell Survival and Recovery from Light Stimulation , 1997, The Journal of cell biology.

[25]  M. Iino,et al.  Functional and Morphological Features of Skeletal Muscle from Mutant Mice Lacking Both Type 1 and Type 3 Ryanodine Receptors , 1997, The Journal of physiology.

[26]  C. Croce,et al.  GOK: a gene at 11p15 involved in rhabdomyosarcoma and rhabdoid tumor development. , 1997, Cancer research.

[27]  M. Iino,et al.  Mitsugumin29, a novel synaptophysin family member from the triad junction in skeletal muscle. , 1998, The Biochemical journal.

[28]  E. Salmon,et al.  Endoplasmic reticulum membrane tubules are distributed by microtubules in living cells using three distinct mechanisms , 1998, Current Biology.

[29]  M Edidin,et al.  Lateral diffusion of GFP-tagged H2Ld molecules and of GFP-TAP1 reports on the assembly and retention of these molecules in the endoplasmic reticulum. , 1999, Immunity.

[30]  R. G. Anderson,et al.  Calcium signal transduction from caveolae. , 1999, Cell calcium.

[31]  D. Goldfarb,et al.  Nucleus-vacuole junctions in Saccharomyces cerevisiae are formed through the direct interaction of Vac8p with Nvj1p. , 2000, Molecular biology of the cell.

[32]  P. Silver,et al.  Mutants Affecting the Structure of the Cortical Endoplasmic Reticulum in Saccharomyces cerevisiae , 2000, The Journal of cell biology.

[33]  Identification of a novel 45 kDa protein (JP-45) from rabbit sarcoplasmic-reticulum junctional-face membrane. , 2000 .

[34]  S. Kohlwein,et al.  A subfraction of the yeast endoplasmic reticulum associates with the plasma membrane and has a high capacity to synthesize lipids. , 2001, European journal of biochemistry.

[35]  S. Cockcroft Phosphatidylinositol transfer proteins couple lipid transport to phosphoinositide synthesis. , 2001, Seminars in cell & developmental biology.

[36]  C. Kung,et al.  A TRP homolog in Saccharomyces cerevisiae forms an intracellular Ca2+-permeable channel in the yeast vacuolar membrane , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[37]  R. Hardie,et al.  Calcium Influx via TRP Channels Is Required to Maintain PIP2 Levels in Drosophila Photoreceptors , 2001, Neuron.

[38]  J. Hurley,et al.  Subcellular targeting by membrane lipids. , 2001, Current opinion in cell biology.

[39]  Michael Fill,et al.  Ryanodine receptor calcium release channels. , 2002, Physiological reviews.

[40]  Heping Cheng,et al.  Dysfunction of store-operated calcium channel in muscle cells lacking mg29 , 2002, Nature Cell Biology.

[41]  M. Berridge,et al.  The endoplasmic reticulum: a multifunctional signaling organelle. , 2002, Cell calcium.

[42]  H. Takeshima,et al.  Deficiency of triad formation in developing skeletal muscle cells lacking junctophilin type 1 , 2002, FEBS letters.

[43]  R. Williams,et al.  Stromal interaction molecule 1 (STIM1), a transmembrane protein with growth suppressor activity, contains an extracellular SAM domain modified by N-linked glycosylation. , 2002, Biochimica et biophysica acta.

[44]  T. Rapoport,et al.  Structural organization of the endoplasmic reticulum , 2002, EMBO reports.

[45]  M. Cyert,et al.  Internal Ca2+ release in yeast is triggered by hypertonic shock and mediated by a TRP channel homologue , 2002, The Journal of cell biology.

[46]  P. Novick,et al.  Sec3p is needed for the spatial regulation of secretion and for the inheritance of the cortical endoplasmic reticulum. , 2003, Molecular biology of the cell.

[47]  Jiwon Kim,et al.  Myo4p and She3p are required for cortical ER inheritance in Saccharomyces cerevisiae , 2003, The Journal of cell biology.

[48]  K. J. Miller,et al.  The β Subunit of the Sec61p Endoplasmic Reticulum Translocon Interacts with the Exocyst Complex in Saccharomyces cerevisiae* , 2003, Journal of Biological Chemistry.

[49]  J. Lippincott-Schwartz,et al.  Measuring Protein Mobility by Photobleaching GFP Chimeras in Living Cells , 2003, Current protocols in cell biology.

[50]  K. Kuo,et al.  Ultrastructure of airway smooth muscle , 2003, Respiratory Physiology & Neurobiology.

[51]  V. Olkkonen,et al.  Oxysterol binding proteins: in more than one place at one time? , 2004, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[52]  K. Mikoshiba,et al.  Junctate is a key element in calcium entry induced by activation of InsP3 receptors and/or calcium store depletion , 2004, The Journal of cell biology.

[53]  D. Poburko,et al.  Organellar junctions promote targeted Ca2+ signaling in smooth muscle: why two membranes are better than one. , 2004, Trends in pharmacological sciences.

[54]  M. Heinlein,et al.  Macromolecular transport and signaling through plasmodesmata. , 2004, International review of cytology.

[55]  G. Isenberg,et al.  Organization of Ca2+ release units in excitable smooth muscle of the guinea-pig urinary bladder. , 2004, Biophysical journal.

[56]  S. Kaul,et al.  Identification of Metastasis-related Genes in a Mouse Model Using a Library of Randomized Ribozymes* , 2004, Journal of Biological Chemistry.

[57]  J. Putney,et al.  Capacitative calcium entry , 1997, The Journal of cell biology.

[58]  Tobias Meyer,et al.  STIM Is a Ca 2+ Sensor Essential for Ca 2+ -Store-Depletion-Triggered Ca 2+ Influx , 2005 .

[59]  C. Faulkner,et al.  Proteomic identification of putative plasmodesmatal proteins from Chara corallina , 2005, Proteomics.

[60]  D. Murray,et al.  Plasma membrane phosphoinositide organization by protein electrostatics , 2005, Nature.

[61]  Tobias Meyer,et al.  STIM Is a Ca2+ Sensor Essential for Ca2+-Store-Depletion-Triggered Ca2+ Influx , 2005, Current Biology.

[62]  James H. Hurley,et al.  Structural mechanism for sterol sensing and transport by OSBP-related proteins , 2005, Nature.

[63]  Michael D. Cahalan,et al.  STIM1, an essential and conserved component of store-operated Ca2+ channel function , 2005, The Journal of cell biology.

[64]  P. Novick,et al.  The organization, structure, and inheritance of the ER in higher and lower eukaryotes. , 2005, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[65]  Marten Postma,et al.  Mechanisms of Light Adaptation in Drosophila Photoreceptors , 2005, Current Biology.

[66]  T. Deerinck,et al.  STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane , 2005, Nature.

[67]  A. Menon,et al.  Transport of newly synthesized sterol to the sterol-enriched plasma membrane occurs via nonvesicular equilibration. , 2005, Biochemistry.

[68]  Tao Xu,et al.  Aggregation of STIM1 underneath the plasma membrane induces clustering of Orai1. , 2006, Biochemical and biophysical research communications.

[69]  Peter Lipp,et al.  Sustained Activity of Calcium Release-activated Calcium Channels Requires Translocation of Mitochondria to the Plasma Membrane* , 2006, Journal of Biological Chemistry.

[70]  Hongyuan Yang Nonvesicular sterol transport: two protein families and a sterol sensor? , 2006, Trends in cell biology.

[71]  A. E. Rossi,et al.  Sarcoplasmic reticulum: The dynamic calcium governor of muscle , 2006, Muscle & nerve.

[72]  JoAnn Buchanan,et al.  Ca2+ store depletion causes STIM1 to accumulate in ER regions closely associated with the plasma membrane , 2006, The Journal of cell biology.

[73]  Joseph P. Yuan,et al.  STIM1 carboxyl-terminus activates native SOC, Icrac and TRPC1 channels , 2006, Nature Cell Biology.

[74]  H. Xue,et al.  MORN motifs in plant PIPKs are involved in the regulation of subcellular localization and phospholipid binding , 2006, Cell Research.

[75]  J. Kinet,et al.  CRACM1 Is a Plasma Membrane Protein Essential for Store-Operated Ca2+ Entry , 2006, Science.

[76]  Christopher J. R. Loewen,et al.  Inter-organelle membrane contact sites: through a glass, darkly. , 2006, Current opinion in cell biology.

[77]  M. Ikura,et al.  Stored Ca2+ Depletion-induced Oligomerization of Stromal Interaction Molecule 1 (STIM1) via the EF-SAM Region , 2006, Journal of Biological Chemistry.

[78]  Bogdan Tanasa,et al.  A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function , 2006, Nature.

[79]  T. Meyer,et al.  PI(3,4,5)P3 and PI(4,5)P2 Lipids Target Proteins with Polybasic Clusters to the Plasma Membrane , 2006, Science.

[80]  J. Hurley,et al.  Nonvesicular sterol movement from plasma membrane to ER requires oxysterol-binding protein–related proteins and phosphoinositides , 2006, The Journal of cell biology.

[81]  X. Zhang,et al.  Genome-wide RNAi screen of Ca(2+) influx identifies genes that regulate Ca(2+) release-activated Ca(2+) channel activity. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[82]  JoAnn Buchanan,et al.  The elementary unit of store-operated Ca2+ entry: local activation of CRAC channels by STIM1 at ER–plasma membrane junctions , 2006, The Journal of cell biology.

[83]  G. Salido,et al.  Interaction of STIM1 with Endogenously Expressed Human Canonical TRP1 upon Depletion of Intracellular Ca2+ Stores* , 2006, Journal of Biological Chemistry.

[84]  J. Putney,et al.  Emerging perspectives in store-operated Ca2+ entry: roles of Orai, Stim and TRP. , 2006, Biochimica et biophysica acta.

[85]  M. Iino,et al.  Coupling of STIM1 to store-operated Ca2+ entry through its constitutive and inducible movement in the endoplasmic reticulum , 2006, Proceedings of the National Academy of Sciences.

[86]  Deepti Trivedi,et al.  RdgB proteins: functions in lipid homeostasis and signal transduction. , 2007, Biochimica et biophysica acta.

[87]  Barry P. Young,et al.  Inheritance of cortical ER in yeast is required for normal septin organization , 2007, The Journal of cell biology.

[88]  G. Daum,et al.  Organelle association visualized by three-dimensional ultrastructural imaging of the yeast cell. , 2007, FEMS yeast research.

[89]  Onn Brandman,et al.  STIM2 Is a Feedback Regulator that Stabilizes Basal Cytosolic and Endoplasmic Reticulum Ca2+ Levels , 2007, Cell.

[90]  Joseph P. Yuan,et al.  STIM1 heteromultimerizes TRPC channels to determine their function as store-operated channels , 2007, Nature Cell Biology.

[91]  Tobias Meyer,et al.  Live-cell imaging reveals sequential oligomerization and local plasma membrane targeting of stromal interaction molecule 1 after Ca2+ store depletion , 2007, Proceedings of the National Academy of Sciences.

[92]  L. Hunyady,et al.  Visualization and Manipulation of Plasma Membrane-Endoplasmic Reticulum Contact Sites Indicates the Presence of Additional Molecular Components within the STIM1-Orai1 Complex*♦ , 2007, Journal of Biological Chemistry.

[93]  Murali Prakriya,et al.  Oligomerization of STIM1 couples ER calcium depletion to CRAC channel activation , 2008, Nature.

[94]  H. Kahr,et al.  Dynamic Coupling of the Putative Coiled-coil Domain of ORAI1 with STIM1 Mediates ORAI1 Channel Activation* , 2008, Journal of Biological Chemistry.

[95]  Joseph P. Yuan,et al.  STIM1 gates TRPC channels, but not Orai1, by electrostatic interaction. , 2008, Molecular cell.

[96]  J. Eu,et al.  STIM1 signalling controls store-operated calcium entry required for development and contractile function in skeletal muscle , 2008, Nature Cell Biology.

[97]  R. Penner,et al.  STIM2 protein mediates distinct store‐dependent and store‐independent modes of CRAC channel activation , 2008, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[98]  V. Barr,et al.  Dynamic movement of the calcium sensor STIM1 and the calcium channel Orai1 in activated T-cells: puncta and distal caps. , 2008, Molecular biology of the cell.

[99]  C. Hoogenraad,et al.  STIM1 Is a MT-Plus-End-Tracking Protein Involved in Remodeling of the ER , 2008, Current Biology.

[100]  E. Lamperti,et al.  Dual functions for the endoplasmic reticulum calcium sensors STIM1 and STIM2 in T cell activation and tolerance , 2008, Nature Immunology.

[101]  O. Petersen,et al.  Polarized calcium signaling in exocrine gland cells. , 2008, Annual review of physiology.

[102]  G. Meer,et al.  Membrane lipids: where they are and how they behave , 2008, Nature Reviews Molecular Cell Biology.

[103]  J. Putney,et al.  Ca2+-store-dependent and -independent reversal of Stim1 localization and function , 2008, Journal of Cell Science.

[104]  Shenyuan L. Zhang,et al.  Orai1 and STIM1 move to the immunological synapse and are up-regulated during T cell activation , 2008, Proceedings of the National Academy of Sciences.

[105]  D. Cahill,et al.  Calmodulin binding to the polybasic C-termini of STIM proteins involved in store-operated calcium entry. , 2008, Biochemistry.

[106]  M. Ikura,et al.  Structural and Mechanistic Insights into STIM1-Mediated Initiation of Store-Operated Calcium Entry , 2008, Cell.

[107]  Shenyuan L. Zhang,et al.  The CRAC channel consists of a tetramer formed by Stim-induced dimerization of Orai dimers , 2008, Nature.

[108]  Rebecca R. Boyles,et al.  Phosphorylation of STIM1 underlies suppression of store-operated calcium entry during mitosis , 2009, Nature Cell Biology.

[109]  Rebecca R. Boyles,et al.  STIM1 Is a Calcium Sensor Specialized for Digital Signaling , 2009, Current Biology.

[110]  M. Endo Calcium-induced calcium release in skeletal muscle. , 2009, Physiological reviews.

[111]  C. Romanin,et al.  A Ca2+ Release-activated Ca2+ (CRAC) Modulatory Domain (CMD) within STIM1 Mediates Fast Ca2+-dependent Inactivation of ORAI1 Channels*♦ , 2009, The Journal of Biological Chemistry.

[112]  G. Voeltz,et al.  Peripheral ER structure and function. , 2009, Current opinion in cell biology.

[113]  P. Worley,et al.  Molecular determinants of fast Ca2+-dependent inactivation and gating of the Orai channels , 2009, Proceedings of the National Academy of Sciences.

[114]  L. Orci,et al.  STIM1-induced precortical and cortical subdomains of the endoplasmic reticulum , 2009, Proceedings of the National Academy of Sciences.

[115]  Joseph P. Yuan,et al.  SOAR and the polybasic STIM1 domains gate and regulate the Orai channels , 2009, Nature Cell Biology.

[116]  William J Lucas,et al.  Plasmodesmata - bridging the gap between neighboring plant cells. , 2009, Trends in cell biology.

[117]  C. Hawes,et al.  The plant endoplasmic reticulum: a cell-wide web. , 2009, The Biochemical journal.

[118]  Marko Popovic,et al.  Dependence of STIM1/Orai1-mediated Calcium Entry on Plasma Membrane Phosphoinositides* , 2009, The Journal of Biological Chemistry.

[119]  S. Feske,et al.  A minimal regulatory domain in the C terminus of STIM1 binds to and activates ORAI1 CRAC channels. , 2009, Biochemical and biophysical research communications.

[120]  W. Nickel,et al.  A Conserved, Lipid‐Mediated Sorting Mechanism of Yeast Ist2 and Mammalian STIM Proteins to the Peripheral ER , 2009, Traffic.

[121]  Xin-Yun Huang,et al.  Orai1 and STIM1 are critical for breast tumor cell migration and metastasis. , 2009, Cancer cell.

[122]  T. Balla,et al.  Store-operated Ca2+ influx and subplasmalemmal mitochondria. , 2009, Cell calcium.

[123]  C. Romanin,et al.  A Cytosolic Homomerization and a Modulatory Domain within STIM1 C Terminus Determine Coupling to ORAI1 Channels* , 2009, Journal of Biological Chemistry.

[124]  S. Mancarella,et al.  The Short N-terminal Domains of STIM1 and STIM2 Control the Activation Kinetics of Orai1 Channels* , 2009, The Journal of Biological Chemistry.

[125]  Y. Mori,et al.  STIM protein coupling in the activation of Orai channels , 2009, Proceedings of the National Academy of Sciences.

[126]  I. Serysheva,et al.  Ryanodine Receptor Structure: Progress and Challenges* , 2009, Journal of Biological Chemistry.

[127]  C. Romanin,et al.  Molecular Determinants of the Coupling between STIM1 and Orai Channels , 2009, The Journal of Biological Chemistry.

[128]  Elizabeth D. Covington,et al.  STIM1 Clusters and Activates CRAC Channels via Direct Binding of a Cytosolic Domain to Orai1 , 2009, Cell.

[129]  G. Salido,et al.  Biochemical and functional properties of the store-operated Ca2+ channels. , 2009, Cellular signalling.

[130]  A. Dulhunty,et al.  Ca2+ signaling in striated muscle: the elusive roles of triadin, junctin, and calsequestrin , 2009, European Biophysics Journal.

[131]  Konstantinos Lefkimmiatis,et al.  Store-operated cyclic AMP signalling mediated by STIM1 , 2009, Nature Cell Biology.

[132]  G. Lur,et al.  Ribosome-free Terminals of Rough ER Allow Formation of STIM1 Puncta and Segregation of STIM1 from IP3 Receptors , 2009, Current Biology.

[133]  R. Dirksen Checking your SOCCs and feet: the molecular mechanisms of Ca2+ entry in skeletal muscle , 2009, The Journal of physiology.

[134]  R. Dolmetsch,et al.  STIM1 and calmodulin interact with Orai1 to induce Ca2+-dependent inactivation of CRAC channels , 2009, Proceedings of the National Academy of Sciences.

[135]  T. Shuttleworth Arachidonic acid, ARC channels, and Orai proteins. , 2009, Cell calcium.

[136]  R. Ghirlando,et al.  Lipid-regulated sterol transfer between closely apposed membranes by oxysterol-binding protein homologues , 2009, The Journal of cell biology.

[137]  Peter Walter,et al.  Supporting Online Material for An ER-Mitochondria Tethering Complex Revealed by a Synthetic Biology Screen , 2009 .

[138]  Kurt Wüthrich,et al.  An EB1-Binding Motif Acts as a Microtubule Tip Localization Signal , 2009, Cell.

[139]  M. Chvanov,et al.  Role of phosphoinositides in STIM1 dynamics and store-operated calcium entry , 2009, The Biochemical journal.

[140]  W. Nickel,et al.  Binding of Plasma Membrane Lipids Recruits the Yeast Integral Membrane Protein Ist2 to the Cortical ER , 2009, Traffic.

[141]  S. Wray,et al.  Sarcoplasmic reticulum function in smooth muscle. , 2010, Physiological reviews.

[142]  F. von Wegner,et al.  Ultra-rapid activation and deactivation of store-operated Ca(2+) entry in skeletal muscle. , 2010, Cell calcium.

[143]  C. Blackstone,et al.  Further assembly required: construction and dynamics of the endoplasmic reticulum network , 2010, EMBO reports.

[144]  Elizabeth D. Covington,et al.  Essential Role for the CRAC Activation Domain in Store-dependent Oligomerization of STIM1 , 2010, Molecular biology of the cell.

[145]  Y. Gwack,et al.  A novel EF-hand protein, CRACR2A, is a cytosolic Ca2+ sensor that stabilizes CRAC channels in T cells , 2010, Nature Cell Biology.

[146]  P. Worley,et al.  An endoplasmic reticulum/plasma membrane junction: STIM1/Orai1/TRPCs , 2010, FEBS letters.

[147]  David N. Mastronarde,et al.  ER sliding dynamics and ER–mitochondrial contacts occur on acetylated microtubules , 2010, The Journal of cell biology.

[148]  A. Babour,et al.  A Surveillance Pathway Monitors the Fitness of the Endoplasmic Reticulum to Control Its Inheritance , 2010, Cell.

[149]  Marten Postma,et al.  Activation of TRP Channels by Protons and Phosphoinositide Depletion in Drosophila Photoreceptors , 2010, Current Biology.

[150]  M. Ikura,et al.  Partial unfolding and oligomerization of stromal interaction molecules as an initiation mechanism of store operated calcium entry. , 2010, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[151]  P. Hogan,et al.  STIM1 gates the store-operated calcium channel ORAI1 in vitro , 2010, Nature Structural &Molecular Biology.

[152]  Luca Scorrano,et al.  An intimate liaison: spatial organization of the endoplasmic reticulum–mitochondria relationship , 2010, The EMBO journal.

[153]  M. Madesh,et al.  S-glutathionylation activates STIM1 and alters mitochondrial homeostasis , 2010, The Journal of cell biology.

[154]  P. Walter,et al.  ERMES-mediated ER-mitochondria contacts: molecular hubs for the regulation of mitochondrial biology , 2010, Journal of Cell Science.

[155]  B. Baird,et al.  A basic sequence in STIM1 promotes Ca2+ influx by interacting with the C-terminal acidic coiled coil of Orai1. , 2010, Biochemistry.

[156]  B. Launikonis,et al.  Toward the roles of store-operated Ca2+ entry in skeletal muscle , 2010, Pflügers Archiv - European Journal of Physiology.

[157]  R. Dolmetsch,et al.  The CRAC Channel Activator STIM1 Binds and Inhibits L-Type Voltage-Gated Calcium Channels , 2010, Science.

[158]  K. Oparka,et al.  Super-Resolution Imaging of Plasmodesmata Using Three-Dimensional Structured Illumination Microscopy1[W] , 2010, Plant Physiology.

[159]  Markus Waldeck-Weiermair,et al.  Mitochondrial Ca2+ uptake and not mitochondrial motility is required for STIM1-Orai1-dependent store-operated Ca2+ entry , 2010, Journal of Cell Science.

[160]  I. Sekler,et al.  Coupling of mitochondria to store-operated Ca(2+)-signaling sustains constitutive activation of protein kinase B/Akt and augments survival of malignant melanoma cells. , 2010, Cell calcium.

[161]  S. Eguchi,et al.  The Calcium Store Sensor, STIM1, Reciprocally Controls Orai and CaV1.2 Channels , 2010, Science.

[162]  M. Zhu,et al.  Agonist-activated Ca2+ influx occurs at stable plasma membrane and endoplasmic reticulum junctions , 2010, Journal of Cell Science.