Plasmonic Stripes in Aqueous Environment Co-Integrated With Si3N4 Photonics

We demonstrate the design, fabrication, and the experimental characterization of gold-based plasmonic stripes butt-coupled with low-pressure-chemical-vapor-deposition (LPCVD)-based Si<sub>3</sub>N<sub>4</sub> waveguides for the excitation of surface-plasmon-polariton (SPP) modes in aqueous environment. Plasmonic gold stripes, in aqueous environment, with cross-sectional dimensions of 100 nm × 7 <italic>μ</italic>m were interfaced with 360 nm × 800 nm Si<sub>3</sub>N<sub>4</sub> waveguides cladded with low-temperature-oxide, exploiting linear photonic tapers with appropriate vertical (VO) and longitudinal (LO) offsets between the plasmonic and photonic waveguide facets. An interface insertion loss of 2.3 ± 0.3 dB and a plasmonic propagation length ( <inline-formula><tex-math notation="LaTeX">$L_{{\rm{spp}}}$</tex-math></inline-formula>) of 75 <italic>μ </italic>m have been experimentally measured at 1.55 <italic>μ</italic>m for a VO of 400 nm and an LO of 500 nm, with simulation results suggesting high tolerance to VO and LO misalignment errors. The proposed integration approach enables seamless co-integration of plasmonic stripes, in aqueous environment, with a low-loss and low-cost LPCVD-based Si<sub>3</sub>N<sub>4</sub> waveguide platform, revealing its strong potential for future employment in biochemical sensing applications.

[1]  Nikos Pleros,et al.  TM grating coupler on low-loss LPCVD based Si3N4 waveguide platform , 2017 .

[2]  Laura M. Lechuga,et al.  Last Advances in Silicon-Based Optical Biosensors , 2016, Sensors.

[3]  J Leuthold,et al.  Characterization of CMOS metal based dielectric loaded surface plasmon waveguides at telecom wavelengths. , 2017, Optics express.

[4]  R. Salas-Montiel,et al.  Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics. , 2010, Nano letters.

[5]  Min Qiu,et al.  Structurally-tolerant vertical directional coupling between metal-insulator-metal plasmonic waveguide and silicon dielectric waveguide. , 2010, Optics express.

[6]  Fang Liu,et al.  Vertical coupling between short range surface plasmon polariton mode and dielectric waveguide mode , 2009 .

[7]  Nikos Pleros,et al.  Active plasmonics in WDM traffic switching applications , 2012, Scientific Reports.

[8]  B. Liedberg,et al.  Surface plasmon resonance for gas detection and biosensing , 1983 .

[9]  S. Papaioannou,et al.  A 320 Gb/s-Throughput Capable 2 $\,\times\,$2 Silicon-Plasmonic Router Architecture for Optical Interconnects , 2011, Journal of Lightwave Technology.

[10]  M. Notomi,et al.  Deep-subwavelength plasmonic mode converter with large size reduction for Si-wire waveguide , 2016 .

[11]  Pierre Berini,et al.  Figures of merit for 2D surface plasmon waveguides and application to metal stripes. , 2007, Optics express.

[12]  Laurent Markey,et al.  Fiber-coupled dielectric-loaded plasmonic waveguides. , 2010, Optics express.

[13]  M. Lipson,et al.  Broadband mid-infrared frequency comb generation in a Si3N4 microresonator , 2015, 2015 Conference on Lasers and Electro-Optics (CLEO).

[14]  Wolfgang Freude,et al.  Photonic-to-plasmonic mode converter. , 2014, Optics letters.

[15]  Ray T. Chen,et al.  High efficiency silicon strip waveguide to plasmonic slot waveguide mode converter , 2015, Photonics West - Optoelectronic Materials and Devices.

[17]  T Tekin,et al.  Tb/s switching fabrics for optical interconnects using heterointegration of plasmonics and silicon photonics: The FP7 PLATON approach , 2010, 2010 IEEE Photinic Society's 23rd Annual Meeting.

[18]  L. Lechuga,et al.  Recent advances in nanoplasmonic biosensors: applications and lab-on-a-chip integration , 2017 .

[19]  H. Avramopoulos,et al.  Interfacing Dielectric-Loaded Plasmonic and Silicon Photonic Waveguides: Theoretical Analysis and Experimental Demonstration , 2012, IEEE Journal of Quantum Electronics.

[20]  Pierre Berini,et al.  Characterization of long-range surface-plasmon-polariton waveguides , 2005 .

[21]  Shiyang Zhu,et al.  Silicon nitride based plasmonic components for CMOS back-end-of-line integration. , 2013, Optics express.

[22]  Lech Wosinski,et al.  High-sensitivity liquid refractive-index sensor based on a Mach-Zehnder interferometer with a double-slot hybrid plasmonic waveguide. , 2015, Optics express.

[23]  F. Liu,et al.  Extremely high efficient coupling between long range surface plasmon polariton and dielectric waveguide mode , 2009 .

[24]  Fang Liu,et al.  Refractive index sensor based on hybrid coupler with short-range surface plasmon polariton and dielectric waveguide , 2012 .

[25]  T. Ebbesen,et al.  Channel plasmon subwavelength waveguide components including interferometers and ring resonators , 2006, Nature.

[26]  J. Leuthold,et al.  High-speed plasmonic modulator in a single metal layer , 2017, Science.

[27]  Laurent Markey,et al.  Thermo-optic control of dielectric-loaded plasmonic waveguide components. , 2010, Optics express.

[28]  Eyal Feigenbaum,et al.  Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides. , 2010, Nano letters.

[29]  D. Gramotnev,et al.  Plasmonics beyond the diffraction limit , 2010 .

[30]  Sailing He,et al.  Novel surface plasmon waveguide for high integration. , 2005, Optics express.

[31]  J. Homola Surface plasmon resonance sensors for detection of chemical and biological species. , 2008, Chemical reviews.

[32]  D Hillerkuss,et al.  Plasmonic modulator with >170 GHz bandwidth demonstrated at 100 GBd NRZ. , 2017, Optics express.

[33]  A Kumar,et al.  0.48Tb/s (12x40Gb/s) WDM transmission and high-quality thermo-optic switching in dielectric loaded plasmonics. , 2012, Optics express.