Low-complexity indexing method for Zn and Dn lattice quantizers

Code vector indexing is a key problem in lattice quantization applications. In order to solve this problem, we propose a method based on the idea of a coding table encompassing a set of points as small as possible. Our method works for both spherical and pyramidal code books. It provides a good tradeoff between computational complexity and storage requirements.

[1]  Thomas R. Fischer,et al.  A pyramid vector quantizer , 1986, IEEE Trans. Inf. Theory.

[2]  Thomas R. Fischer Entropy-constrained geometric vector quantization for transform image coding , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[3]  Thomas R. Fischer,et al.  Enumeration encoding and decoding algorithms for pyramid cubic lattice and trellis codes , 1995, IEEE Trans. Inf. Theory.

[4]  Michel Barlaud,et al.  Pyramidal lattice vector quantization for multiscale image coding , 1994, IEEE Trans. Image Process..

[5]  Thomas R. Fischer,et al.  Two-stage vector quantization-lattice vector quantization , 1994, IEEE Trans. Inf. Theory.

[6]  Jean-Marie Moureaux,et al.  Efficient indexing method for lattice quantization applications , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[7]  Michel Barlaud,et al.  Image coding using lattice vector quantization of wavelet coefficients , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[8]  Robert M. Gray,et al.  An Algorithm for Vector Quantizer Design , 1980, IEEE Trans. Commun..

[9]  Jean-Pierre Adoul,et al.  Algorithme de quantification vectorielle sphérique à partir du réseau de Gosset d’ordre 8 , 1988 .

[10]  Jean-Pierre Adoul,et al.  Nearest neighbor algorithm for spherical codes from the Leech lattice , 1988, IEEE Trans. Inf. Theory.

[11]  J. Pieter M. Schalkwijk,et al.  An algorithm for source coding , 1972, IEEE Trans. Inf. Theory.