Entanglement distillation for quantum communication network with atomic-ensemble memories.

Atomic ensembles are effective memory nodes for quantum communication network due to the long coherence time and the collective enhancement effect for the nonlinear interaction between an ensemble and a photon. Here we investigate the possibility of achieving the entanglement distillation for nonlocal atomic ensembles by the input-output process of a single photon as a result of cavity quantum electrodynamics. We give an optimal entanglement concentration protocol (ECP) for two-atomic-ensemble systems in a partially entangled pure state with known parameters and an efficient ECP for the systems in an unknown partially entangled pure state with a nondestructive parity-check detector (PCD). For the systems in a mixed entangled state, we introduce an entanglement purification protocol with PCDs. These entanglement distillation protocols have high fidelity and efficiency with current experimental techniques, and they are useful for quantum communication network with atomic-ensemble memories.

[1]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[2]  Charles H. Bennett,et al.  Quantum cryptography without Bell's theorem. , 1992, Physical review letters.

[3]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[4]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[5]  Deutsch,et al.  Quantum Privacy Amplification and the Security of Quantum Cryptography over Noisy Channels. , 1996, Physical review letters.

[6]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[7]  Charles H. Bennett,et al.  Purification of noisy entanglement and faithful teleportation via noisy channels. , 1995, Physical review letters.

[8]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[9]  M. Koashi,et al.  Quantum entanglement for secret sharing and secret splitting , 1999 .

[10]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[11]  S. Bose,et al.  PURIFICATION VIA ENTANGLEMENT SWAPPING AND CONSERVED ENTANGLEMENT , 1998, quant-ph/9812013.

[12]  J. Cirac,et al.  Quantum repeaters based on entanglement purification , 1998, quant-ph/9808065.

[13]  G. Guo,et al.  Optimal entanglement purification via entanglement swapping , 2000, quant-ph/0005125.

[14]  Jian-Wei Pan,et al.  Practical scheme for entanglement concentration , 2001, quant-ph/0104039.

[15]  Jian-Wei Pan,et al.  Entanglement purification for quantum communication , 2000, Nature.

[16]  M. Koashi,et al.  Concentration and purification scheme for two partially entangled photon pairs , 2001, quant-ph/0101042.

[17]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[18]  Thomas G. Walker,et al.  Creating single-atom and single-photon sources from entangled atomic ensembles , 2002, quant-ph/0203080.

[19]  G. Long,et al.  Theoretically efficient high-capacity quantum-key-distribution scheme , 2000, quant-ph/0012056.

[20]  G. Long,et al.  General scheme for superdense coding between multiparties , 2001, quant-ph/0110112.

[21]  Jian-Wei Pan,et al.  Polarization entanglement purification using spatial entanglement. , 2001, Physical review letters.

[22]  Jian-Wei Pan,et al.  Experimental entanglement purification of arbitrary unknown states , 2003, Nature.

[23]  Fuguo Deng,et al.  Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block , 2003, quant-ph/0308173.

[24]  Jian-Wei Pan,et al.  Efficient multiparty quantum-secret-sharing schemes , 2004, quant-ph/0405179.

[25]  H. Kimble,et al.  Scalable photonic quantum computation through cavity-assisted interactions. , 2004, Physical review letters.

[26]  Ming Yang,et al.  Entanglement concentration for unknown atomic entangled states via entanglement swapping , 2004, quant-ph/0411157.

[27]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[28]  Fuguo Deng,et al.  Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs (4 pages) , 2005, quant-ph/0504158.

[29]  Fuguo Deng,et al.  Improving the security of secure direct communication based on the secret transmitting order of particles , 2006, quant-ph/0612016.

[30]  Ming Yang,et al.  Concentration for unknown atomic entangled states via cavity decay (3 pages) , 2005, quant-ph/0510044.

[31]  D. Hunger,et al.  Strong atom–field coupling for Bose–Einstein condensates in an optical cavity on a chip , 2007, Nature.

[32]  Jian-Wei Pan,et al.  Fault-tolerant quantum repeater with atomic ensembles and linear optics , 2006, quant-ph/0609151.

[33]  Fuguo Deng,et al.  Faithful qubit transmission against collective noise without ancillary qubits , 2007, 0708.0068.

[34]  K Mølmer,et al.  Error correction in ensemble registers for quantum repeaters and quantum computers. , 2007, Physical review letters.

[35]  Fuguo Deng,et al.  Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics , 2008, 0806.0115.

[36]  Yu-Bo Sheng,et al.  Erratum: Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity [Phys. Rev. A77, 042308 (2008)] , 2008 .

[37]  Xi-Han Li,et al.  Efficient quantum key distribution over a collective noise channel (6 pages) , 2008, 0808.0042.

[38]  Nicolas Gisin,et al.  Quantum repeaters based on atomic ensembles and linear optics , 2009, 0906.2699.

[39]  Feng Mei,et al.  Scalable quantum information processing with atomic ensembles and flying photons , 2009, 0910.0585.

[40]  B. Sanders,et al.  Optical quantum memory , 2009, 1002.4659.

[41]  Tilo Steinmetz,et al.  A fiber Fabry–Perot cavity with high finesse , 2010, 1005.0067.

[42]  Fuguo Deng,et al.  One-step deterministic polarization-entanglement purification using spatial entanglement , 2010, 1008.3509.

[43]  Thomas G. Walker,et al.  Quantum information with Rydberg atoms , 2009, 0909.4777.

[44]  Markus P. Mueller,et al.  Efficient quantum repeater based on deterministic Rydberg gates , 2010, 1003.1911.

[45]  Xihan Li Deterministic polarization-entanglement purification using spatial entanglement , 2010, 1010.5301.

[46]  Fuguo Deng,et al.  Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement , 2010 .

[47]  Zhang Yong Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities , 2011 .

[48]  J Fan,et al.  Invited review article: Single-photon sources and detectors. , 2011, The Review of scientific instruments.

[49]  Fu-Guo Deng,et al.  Efficient multipartite entanglement purification with the entanglement link from a subspace , 2011, 1110.0059.

[50]  Y. Malakyan,et al.  Quantum repeaters based on deterministic storage of a single photon in distant atomic ensembles , 2011, 1110.2553.

[51]  Fuguo Deng One-step error correction for multipartite polarization entanglement , 2011, 1107.0093.

[52]  S. Polyakov,et al.  : Single-photon sources and detectors , 2011 .

[53]  ChuanLiang Wang Efficient entanglement concentration for partially entangled electrons using a quantum-dot and microcavity coupled system , 2012 .

[54]  L. Aolita,et al.  Robust-fidelity atom-photon entangling gates in the weak-coupling regime. , 2012, Physical review letters.

[55]  K. Moelmer,et al.  Quantum repeater with Rydberg-blocked atomic ensembles in fiber-coupled cavities , 2012, 1312.3086.

[56]  Fuguo Deng Optimal nonlocal multipartite entanglement concentration based on projection measurements , 2011, 1112.1355.

[57]  Z. Peng,et al.  Atomic and photonic entanglement concentration via photonic Faraday rotation , 2012, 1210.2015.

[58]  B. Zheng,et al.  Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs , 2012, 1202.2190.

[59]  Lan Zhou,et al.  Quantum Entanglement Concentration Based on Nonlinear Optics for Quantum Communications , 2013, Entropy.

[60]  Fu-Guo Deng,et al.  Hyperentanglement purification and concentration assisted by diamond NV centers inside photonic crystal cavities , 2013, 1309.0168.

[61]  Fu-Guo Deng,et al.  Practical hyperentanglement concentration for two-photon four-qubit systems with linear optics , 2013, 1306.0050.

[62]  F. Brennecke,et al.  Cold atoms in cavity-generated dynamical optical potentials , 2012, 1210.0013.

[63]  Cong Cao,et al.  Atomic entanglement purification and concentration using coherent state input-output process in low-Q cavity QED regime. , 2013, Optics express.

[64]  Norbert Kalb,et al.  A quantum gate between a flying optical photon and a single trapped atom , 2014, Nature.

[65]  J. D. Thompson,et al.  Nanophotonic quantum phase switch with a single atom , 2014, Nature.

[66]  Yu-Bo Sheng,et al.  Deterministic polarization entanglement purification using time-bin entanglement , 2013, 1311.0470.

[67]  Bao-Cang Ren,et al.  General hyperentanglement concentration for photon systems assisted by quantum-dot spins inside optical microcavities. , 2014, Optics express.