A Honeycomb‐Layered Na3Ni2SbO6: A High‐Rate and Cycle‐Stable Cathode for Sodium‐Ion Batteries

A honeycomb layered Na3Ni2SbO6 is synthesized as a cathode for sodium-ion batteries. This new host material exhibits a high capacity of 117 mA h g(-1), a remarkable cyclability with 70% capacity retention over 500 cycles at a 2C rate, and a superior rate capability with >75% capacity delivered even at a very high rate of 30 C (6000 mA g(-1)). These results open a new perspective to develop high-capacity and high-rate Na-ion batteries for widespread electric-energy-storage applications.

[1]  Palani Balaya,et al.  The First Report on Excellent Cycling Stability and Superior Rate Capability of Na3V2(PO4)3 for Sodium Ion Batteries , 2013 .

[2]  C. Delmas,et al.  P2-Na(x)VO2 system as electrodes for batteries and electron-correlated materials. , 2013, Nature materials.

[3]  V. Nalbandyan,et al.  Preparation, crystal structures and rapid hydration of P2- and P3-type sodium chromium antimony oxides , 2011 .

[4]  P. Hagenmuller,et al.  Electrochemical intercalation of sodium in NaxCoO2 bronzes , 1981 .

[5]  Shinichi Komaba,et al.  Study on the reversible electrode reaction of Na(1-x)Ni(0.5)Mn(0.5)O2 for a rechargeable sodium-ion battery. , 2012, Inorganic chemistry.

[6]  Xinping Ai,et al.  A low-cost and environmentally benign aqueous rechargeable sodium-ion battery based on NaTi2(PO4)3–Na2NiFe(CN)6 intercalation chemistry , 2013 .

[7]  Shinichi Komaba,et al.  P2-type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries. , 2012, Nature materials.

[8]  Jean-Marie Tarascon,et al.  Synthesis, Structure, and Electrochemical Properties of the Layered Sodium Insertion Cathode Material: NaNi1/3Mn1/3Co1/3O2 , 2012 .

[9]  Gerbrand Ceder,et al.  NMR, PDF and RMC study of the positive electrode material Li(Ni0.5Mn0.5)O2 synthesized by ion-exchange methods , 2007 .

[10]  K. Abraham Intercalation positive electrodes for rechargeable sodium cells , 1982 .

[11]  L. Nazar,et al.  Sodium and sodium-ion energy storage batteries , 2012 .

[12]  M. Armand,et al.  Building better batteries , 2008, Nature.

[13]  A. Sleight,et al.  Solid Solution Studies of Layered Honeycomb-Ordered Phases O3-Na3M2SbO6 (M = Cu, Mg, Ni, Zn) , 2013 .

[14]  Zhenguo Yang,et al.  Reversible Sodium Ion Insertion in Single Crystalline Manganese Oxide Nanowires with Long Cycle Life , 2011, Advanced materials.

[15]  Jiangfeng Qian,et al.  SiC-Sb-C nanocomposites as high-capacity and cycling-stable anode for sodium-ion batteries , 2013 .

[16]  D Carlier,et al.  Electrochemical investigation of the P2–NaxCoO2 phase diagram. , 2011, Nature materials.

[17]  Donghan Kim,et al.  Enabling Sodium Batteries Using Lithium‐Substituted Sodium Layered Transition Metal Oxide Cathodes , 2011 .

[18]  M. Winter,et al.  P2-type layered Na0.45Ni0.22Co0.11Mn0.66O2 as intercalation host material for lithium and sodium batteries , 2013 .

[19]  Gerbrand Ceder,et al.  Electrochemical Properties of Monoclinic NaNiO2 , 2011 .

[20]  C. Delmas,et al.  Electrochemical Na-Deintercalation from NaVO2 , 2011 .

[21]  Donghan Kim,et al.  Layered Na[Ni1/3Fe1/3Mn1/3]O2 cathodes for Na-ion battery application , 2012 .

[22]  Hiroaki Yoshida,et al.  Synthesis and Electrode Performance of O3-Type NaFeO2-NaNi1/2Mn1/2O2 Solid Solution for Rechargeable Sodium Batteries , 2013 .

[23]  W. Morgan,et al.  Inner-orbital binding-energy shifts of antimony and bismuth compounds , 1973 .

[24]  V. Nalbandyan,et al.  Mixed oxides of sodium, antimony (5+) and divalent metals (Ni, Co, Zn or Mg) , 2010 .

[25]  Liquan Chen,et al.  Room-temperature stationary sodium-ion batteries for large-scale electric energy storage , 2013 .

[26]  Y. Shao-horn,et al.  The Influence of Surface Chemistry on the Rate Capability of LiNi0.5Mn0.5O2 for Lithium Rechargeable Batteries , 2010 .

[27]  Brian H. Toby,et al.  EXPGUI, a graphical user interface for GSAS , 2001 .

[28]  Xiaobo Ji,et al.  First exploration of Na-ion migration pathways in the NASICON structure Na3V2(PO4)3 , 2014 .

[29]  Jun Liu,et al.  Electrochemical energy storage for green grid. , 2011, Chemical reviews.