Indistinguishability of Elementary Systems as a Resource for Quantum Information Processing.

Typical elements of quantum networks are made by identical systems, which are the basic particles constituting a resource for quantum information processing. Whether the indistinguishability due to particle identity is an exploitable quantum resource remains an open issue. Here we study independently prepared identical particles showing that, when they spatially overlap, an operational entanglement exists that can be made manifest by means of separated localized measurements. We prove this entanglement is physical in that it can be directly exploited to activate quantum information protocols, such as teleportation. These results establish that particle indistinguishability is a utilizable quantum feature and open the way to new quantum-enhanced applications.

[1]  D. Gross,et al.  Novel schemes for measurement-based quantum computation. , 2006, Physical review letters.

[2]  M. Lewenstein,et al.  Quantum Correlations in Systems of Indistinguishable Particles , 2002, quant-ph/0203060.

[3]  Daniel Cavalcanti,et al.  Useful entanglement from the Pauli principle , 2007 .

[4]  J. Ignacio Cirac,et al.  Quantum correlations in two-fermion systems , 2001 .

[5]  Andreas Trabesinger,et al.  Quantum computing: towards reality , 2017, Nature.

[6]  W. Marsden I and J , 2012 .

[7]  Bei Zeng,et al.  Entanglement in a two-identical-particle system , 2001 .

[8]  Jian-Wei Pan,et al.  Experimental Ten-Photon Entanglement. , 2016, Physical review letters.

[9]  R. H. Brown,et al.  Interferometry of the intensity fluctuations in light. II. An experimental test of the theory for partially coherent light , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[10]  Giuseppe Compagno,et al.  N identical particles and one particle to entangle them all , 2017, 1704.06359.

[11]  Tsubasa Ichikawa,et al.  Entanglement of indistinguishable particles , 2010, 1009.4147.

[12]  F. Benatti,et al.  Sub-shot noise sensitivities without entanglement , 2011, 1109.0206.

[13]  W. Vassen,et al.  Comparison of Spectral Linewidths for Quantum Degenerate Bosons and Fermions. , 2016, Physical review letters.

[14]  D. DiVincenzo,et al.  Superconducting resonators as beam splitters for linear-optics quantum computation. , 2010, Physical review letters.

[15]  Giuseppe Compagno,et al.  Quantum entanglement of identical particles by standard information-theoretic notions , 2015, Scientific Reports.

[16]  A. Buchleitner,et al.  Performances and robustness of quantum teleportation with identical particles , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[17]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[18]  G. Vallone,et al.  Bell Experiments with Random Destination Sources , 2010, 1009.4854.

[19]  A. Buchleitner,et al.  Essential entanglement for atomic and molecular physics , 2010, 1012.3940.

[20]  U. Marzolino,et al.  Entanglement robustness and geometry in systems of identical particles , 2012, 1204.3746.

[21]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[22]  L. You,et al.  Quantum correlations in two-boson wave functions , 2001 .

[23]  David E. Pritchard,et al.  Optics and interferometry with atoms and molecules , 2009 .

[24]  GianCarlo Ghirardi,et al.  General criterion for the entanglement of two indistinguishable particles (10 pages) , 2004 .

[25]  P. Bordone,et al.  Linear entropy as an entanglement measure in two-fermion systems , 2006, quant-ph/0611223.

[26]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[27]  Luca Marinatto,et al.  Entanglement and Properties of Composite Quantum Systems: A Conceptual and Mathematical Analysis , 2001 .

[28]  Yasunobu Nakamura,et al.  Quantum computers , 2010, Nature.

[29]  A. P. Balachandran,et al.  Entanglement and particle identity: a unifying approach. , 2013, Physical review letters.

[30]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[31]  Giuseppe Compagno,et al.  Universality of Schmidt decomposition and particle identity , 2016, Scientific Reports.

[32]  Giuliano Benenti,et al.  Entanglement in helium , 2012, 1204.6667.

[33]  Fernando de Melo,et al.  Entanglement of identical particles and the detection process , 2009, 0902.1684.

[34]  M. Rispoli,et al.  Measuring entanglement entropy in a quantum many-body system , 2015, Nature.

[35]  Fabio Benatti,et al.  Remarks on Entanglement and Identical Particles , 2017, Open Syst. Inf. Dyn..

[36]  M. Plenio,et al.  Colloquium: quantum coherence as a resource , 2016, 1609.02439.

[37]  J. Eisert,et al.  Advances in quantum teleportation , 2015, Nature Photonics.

[38]  S. Girvin,et al.  Quantum non-demolition detection of single microwave photons in a circuit , 2010, 1003.2734.

[39]  A. Buchleitner,et al.  Quantum teleportation with identical particles , 2015, 1502.05814.

[40]  M B Plenio,et al.  Extracting entanglement from identical particles. , 2013, Physical review letters.

[41]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[42]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[43]  H M Wiseman,et al.  Entanglement of indistinguishable particles shared between two parties. , 2003, Physical review letters.

[44]  P. Zanardi Quantum entanglement in fermionic lattices , 2002 .

[45]  Roberto Floreanini,et al.  Entanglement of Identical Particles , 2014, Open Syst. Inf. Dyn..