TCF7L2 is associated with high serum triacylglycerol and differentially expressed in adipose tissue in families with familial combined hyperlipidaemia

[1]  Thomas D. Dyer,et al.  Quantitative Trait Nucleotide Analysis Using Bayesian Model Selection , 2010, Human biology.

[2]  S. Das,et al.  Transcription factor 7-like 2 polymorphisms and type 2 diabetes, glucose homeostasis traits and gene expression in US participants of European and African descent , 2007, Diabetologia.

[3]  M. Laakso,et al.  Variants of transcription factor 7-like 2 (TCF7L2) gene predict conversion to type 2 diabetes in the Finnish Diabetes Prevention Study and are associated with impaired glucose regulation and impaired insulin secretion , 2007, Diabetologia.

[4]  R. Kittles,et al.  Association of TCF7L2 polymorphisms with type 2 diabetes in Mexico City , 2007, Clinical genetics.

[5]  Jayaram Radhakrishnan,et al.  LRP6 Mutation in a Family with Early Coronary Disease and Metabolic Risk Factors , 2007, Science.

[6]  R. Duggirala,et al.  Haplotypes of Transcription Factor 7–Like 2 (TCF7L2) Gene and Its Upstream Region Are Associated With Type 2 Diabetes and Age of Onset in Mexican Americans , 2007, Diabetes.

[7]  S. Humphries,et al.  Common variants in the TCF7L2 gene and predisposition to type 2 diabetes in UK European Whites, Indian Asians and Afro-Caribbean men and women , 2006, Journal of Molecular Medicine.

[8]  R. Scharfmann,et al.  Transcription Factor TCF7L2 Genetic Study in the French Population , 2006, Diabetes.

[9]  Laura J. Scott,et al.  Association of Transcription Factor 7-Like 2 (TCF7L2) Variants With Type 2 Diabetes in a Finnish Sample , 2006, Diabetes.

[10]  K. Silver,et al.  Polymorphisms in the Transcription Factor 7-Like 2 (TCF7L2) Gene Are Associated With Type 2 Diabetes in the Amish , 2006, Diabetes.

[11]  Steven Wiltshire,et al.  Association Analysis of 6,736 U.K. Subjects Provides Replication and Confirms TCF7L2 as a Type 2 Diabetes Susceptibility Gene With a Substantial Effect on Individual Risk , 2006, Diabetes.

[12]  C. Plaisier,et al.  Common Hepatic Nuclear Factor-4α Variants Are Associated With High Serum Lipid Levels and the Metabolic Syndrome , 2006, Diabetes.

[13]  H. Stefánsson,et al.  Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes , 2006, Nature Genetics.

[14]  J. Blangero,et al.  The quantitative trait linkage disequilibrium test: a more powerful alternative to the quantitative transmission disequilibrium test for use in the absence of population stratification , 2005, BMC Genetics.

[15]  L. Peltonen,et al.  USF1 and dyslipidemias: converging evidence for a functional intronic variant. , 2005, Human molecular genetics.

[16]  Päivi Pajukanta,et al.  Familial Combined Hyperlipidemia in Mexicans: Association With Upstream Transcription Factor 1 and Linkage on Chromosome 16q24.1 , 2005, Arteriosclerosis, thrombosis, and vascular biology.

[17]  R. Nusse,et al.  Convergence of Wnt, ß-Catenin, and Cadherin Pathways , 2004, Science.

[18]  L. Peltonen,et al.  Familial combined hyperlipidemia is associated with upstream transcription factor 1 (USF1) , 2004, Nature Genetics.

[19]  L. Peltonen,et al.  Genome scans provide evidence for low-HDL-C loci on chromosomes 8q23, 16q24.1-24.2, and 20q13.11 in Finnish families. , 2002, American journal of human genetics.

[20]  C. Aguilar-Salinas,et al.  High prevalence of low HDL cholesterol concentrations and mixed hyperlipidemia in a Mexican nationwide survey. , 2001, Journal of lipid research.

[21]  H H Göring,et al.  Linkage analysis in the presence of errors III: marker loci and their map as nuisance parameters. , 2000, American journal of human genetics.

[22]  J D Terwilliger,et al.  Genomewide scan for familial combined hyperlipidemia genes in finnish families, suggesting multiple susceptibility loci influencing triglyceride, cholesterol, and apolipoprotein B levels. , 1999, American journal of human genetics.

[23]  J R O'Connell,et al.  PedCheck: a program for identification of genotype incompatibilities in linkage analysis. , 1998, American journal of human genetics.

[24]  L. Almasy,et al.  Multipoint quantitative-trait linkage analysis in general pedigrees. , 1998, American journal of human genetics.

[25]  T. Lehtimäki,et al.  Linkage of familial combined hyperlipidaemia to chromosome 1q21–q23 , 1998, Nature Genetics.

[26]  Viikari,et al.  Glucose intolerance in familial combined hyperlipidaemia , 1998 .

[27]  R. Deitch Commentary from Westminster , 1981, The Lancet.

[28]  A. Motulsky,et al.  Hyperlipidemia in coronary heart disease. II. Genetic analysis of lipid levels in 176 families and delineation of a new inherited disorder, combined hyperlipidemia. , 1973, The Journal of clinical investigation.

[29]  A. Aro,et al.  Family study of serum lipids and lipoproteins in coronary heart-disease. , 1973, Lancet.

[30]  H. Clevers Wnt/beta-catenin signaling in development and disease. , 2006, Cell.

[31]  F. Luft A fat attack occurred in fat city , 2005, Journal of Molecular Medicine.

[32]  R. Nusse,et al.  Convergence of Wnt, beta-catenin, and cadherin pathways. , 2004, Science.

[33]  G. Abecasis,et al.  A general test of association for quantitative traits in nuclear families. , 2000, American journal of human genetics.

[34]  J. Viikari,et al.  Glucose intolerance in familial combined hyperlipidaemia. EUFAM study group. , 1998, European journal of clinical investigation.

[35]  Joseph L. Goldstein,et al.  Hyperlipidemia in Coronary Heart Disease , 1973 .

[36]  G. Abecasis,et al.  Supporting Online Material Materials and Methods Figs. S1 to S8 Tables S1 to S10 References a Genome-wide Association Study of Type 2 Diabetes in Finns Detects Multiple Susceptibility Variants , 2022 .