Hodge theory of degenerations, (I): consequences of the decomposition theorem
暂无分享,去创建一个
[1] P. Deligne,et al. Théorème de Lefschetz et Critères de Dégénérescence de Suites Spectrales , 1968 .
[2] P. Griffiths,et al. Some Enumerative Global Properties of Variations of Hodge Structures , 2009 .
[3] Compactications defined by arrangements II: locally symmetric varieties of type IV , 2002, math/0201218.
[4] C. Voisin. Théorème de Torelli pour les cubiques de ℙ5 , 1986 .
[5] J. Kollár,et al. Threefolds and deformations of surface singularities , 1988 .
[6] M. Saito,et al. Smoothing of rational singularities and Hodge structure , 2019 .
[7] Sandor J. Kovacs,et al. Log canonical singularities are Du Bois , 2009, 0902.0648.
[8] Sandor J. Kovacs,et al. Families of varieties of general type over compact bases , 2007, 0704.2556.
[9] S. Grushevsky,et al. Complete moduli of cubic threefolds and their intermediate Jacobians , 2015, Proceedings of the London Mathematical Society.
[10] V. Kulikov,et al. Complex Algebraic Varieties: Periods of Integrals and Hodge Structures , 1998 .
[11] The Leray spectral sequence is motivic , 2003, math/0301140.
[12] M. Saito. Onb-function, spectrum and rational singularity , 1993 .
[13] M. Kerr,et al. An Exponential History of Functions with Logarithmic Growth , 2009, 0903.4903.
[14] Completion of Period Mappings and Ampleness of the Hodge bundle , 2017, 1708.09523.
[15] D. Abramovich,et al. WEAK SEMISTABLE REDUCTION IN CHARACTERISTIC 0 , 1997 .
[16] J. Shah. A Complete Moduli Space for K3 Surfaces of Degree 2 , 1980 .
[17] Karim A. Adiprasito,et al. Semistable reduction in characteristic 0 , 2018, 1810.03131.
[18] C. Voisin. Théorème de Torelli pour les cubiques de ℙ5 , 1986 .
[19] F. Guillén,et al. Sur le théorème local des cycles invariants , 1990 .
[20] J. Milnor. Singular points of complex hypersurfaces , 1968 .
[21] K. O’Grady,et al. GIT versus Baily-Borel compactification for quartic K3 surfaces , 2016, 1612.07432.
[22] L. Migliorini,et al. Hodge-theoretic aspects of the Decomposition Theorem , 2007, 0710.2708.
[23] G. E. Bredon. Introduction to compact transformation groups , 1972 .
[24] N. M. Katz. Elliptic convolution, G2, and elliptic surfaces , 2015 .
[25] J. H. M. Steenbrink,et al. Mixed Hodge Structure on the Vanishing Cohomology , 1977 .
[26] Log canonical singularities and complete moduli of stable pairs , 1996, alg-geom/9608013.
[27] Sandor J. Kovacs,et al. Singularities of the minimal model program , 2013 .
[28] A. Ash. Smooth Compactification of Locally Symmetric Varieties , 1975 .
[29] C. Voisin,et al. A hyper-K\"ahler compactification of the Intermediate Jacobian fibration associated to a cubic fourfold , 2016, 1602.05534.
[30] C. H. Clemens,et al. Degeneration of Kähler manifolds , 1977 .
[31] N. A'campo. La fonction zêta d'une monodromie , 1975 .
[32] Raymond Wells. Comparison of de Rham and Dolbeault cohomology for proper surjective mappings. , 1974 .
[33] G. Pearlstein,et al. Singularities of admissible normal functions , 2007, 0711.0964.
[34] C. Schnell. An overview of Morihiko Saito's theory of mixed Hodge modules , 2014, 1405.3096.
[35] C. Voisin,et al. Remarks on degenerations of hyper-K\"ahler manifolds , 2017, 1704.02731.
[36] Karl Schwede. A simple characterization of Du Bois singularities , 2007, Compositio Mathematica.
[37] M. Saito,et al. Mixed Hodge modules , 1990 .
[38] M. Kashiwara,et al. The Poincare´ lemma for variations of polarized Hodge structure , 1987 .
[39] Weak semistable reduction in characteristic 0 , 1997, alg-geom/9707012.
[40] Valentine S. Kulikov. Mixed Hodge Structures and Singularities , 1998 .
[41] P. Brosnan. Perverse obstructions to flat regular compactifications , 2016, 1612.01220.
[42] L. Migliorini,et al. The perverse filtration and the Lefschetz Hyperplane Theorem , 2008, 0805.4634.
[43] Notes on Perverse Sheaves and Vanishing Cycles , 1999, math/9908107.
[44] M. Saito,et al. Modules de Hodge Polarisables , 1988 .
[45] W. Schmid. Variation of hodge structure: The singularities of the period mapping , 1973 .
[46] K. O’Grady,et al. Birational geometry of the moduli space of quartic $K3$ surfaces , 2016, Compositio Mathematica.
[47] M. Saito,et al. Hodge ideals and spectrum of isolated hypersurface singularities , 2019, Annales de l'Institut Fourier.
[48] Da Silva,et al. On the Limiting Behavior of Variations of Hodge Structures , 2016 .
[49] M. Saito. Decomposition theorem for proper Kähler morphisms , 1990 .
[50] L. Migliorini,et al. The Hodge theory of algebraic maps , 2003, math/0306030.
[51] J. Shah. Insignificant limit singularities of surfaces and their mixed Hodge structure , 1979 .
[52] M. S. Nural,et al. 163 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? , 2005 .
[53] A. Dimca,et al. VANISHING CYCLE SHEAVES OF ONE-PARAMETER SMOOTHINGS AND QUASI-SEMISTABLE DEGENERATIONS , 2008, 0810.4896.
[54] J. Shah. Degenerations of $K3$ surfaces of degree $4$ , 1981 .
[55] Sandor J. Kovacs. Rational, Log Canonical, Du Bois Singularities: On the Conjectures of Kollár and Steenbrink , 1999, Compositio Mathematica.
[56] M. Verbitsky. A global Torelli theorem for hyperkahler manifolds , 2009, 0908.4121.
[57] D. Mumford,et al. Geometric Invariant Theory , 2011 .
[58] Otto Forster,et al. Lectures on Riemann Surfaces , 1999 .
[59] B. Hassett. Local stable reduction of plane curve singularities , 2000 .
[60] W. Schmid,et al. L2 and intersection cohomologies for a polarizable variation of Hodge structure , 1987 .
[61] Liang,et al. Li , 2018, Encyclopedic Dictionary of Archaeology.
[62] M. Bradley. Washington University in St , 2006 .
[63] James D. Lewis,et al. Specialization of cycles and the $K$-theory elevator , 2017, Communications in Number Theory and Physics.
[64] M. Saito,et al. Deformation of rational singularities and Hodge structure , 2019, Algebraic Geometry.
[65] J. Steenbrink. Limits of Hodge structures , 1976 .
[66] Polarized relations on horizontal SL(2)s , 2017, 1705.03117.
[67] T. Chow,et al. Unit Interval Orders and the Dot Action on the Cohomology of Regular Semisimple Hessenberg Varieties , 2015, 1511.00773.
[68] E. Looijenga,et al. The period map for cubic threefolds , 2006, Compositio Mathematica.
[69] Motivic Igusa zeta functions , 1998, math/9803040.
[70] P. Deligne. Décompositions dans la catégorie dérivée , 1994 .
[71] R. Laza. The moduli space of cubic fourfolds via the period map , 2007, 0705.0949.
[72] P. Deligne,et al. Equations differentielles à points singuliers reguliers , 1970 .
[73] K. O’Grady,et al. GIT versus Baily-Borel compactification for K3's which are double covers of P1×P1 , 2021 .
[74] John M Conly,et al. Letter from the authors. , 2010, The Canadian journal of infectious diseases & medical microbiology = Journal canadien des maladies infectieuses et de la microbiologie medicale.
[75] R. Laza. The KSBA compactification for the moduli space of degree two K3 pairs , 2012, 1205.3144.
[76] János Kollár,et al. Birational Geometry of Algebraic Varieties , 1998 .
[77] D. Toledo,et al. The Moduli Space of Cubic Threefolds As a Ball Quotient , 2006, math/0608287.
[78] A. Dimca,et al. Some remarks on limit mixed Hodge structures and spectrum , 2012, 1210.3971.
[79] M. Popa,et al. Hodge Ideals , 2016, Memoirs of the American Mathematical Society.
[80] F. Elzein,et al. Mixed Hodge Structures , 2013, 1302.5811.