Clouds and the Atmospheric Circulation Response to Warming

AbstractThe authors study the effect of clouds on the atmospheric circulation response to CO2 quadrupling in an aquaplanet model with a slab ocean lower boundary. The cloud effect is isolated by locking the clouds to either the control or 4xCO2 state in the shortwave (SW) or longwave (LW) radiation schemes. In the model, cloud radiative changes explain more than half of the total poleward expansion of the Hadley cells, midlatitude jets, and storm tracks under CO2 quadrupling, even though they cause only one-fourth of the total global-mean surface warming. The effect of clouds on circulation results mainly from the SW cloud radiative changes, which strongly enhance the equator-to-pole temperature gradient at all levels in the troposphere, favoring stronger and poleward-shifted midlatitude eddies. By contrast, quadrupling CO2 while holding the clouds fixed causes strong polar amplification and weakened midlatitude baroclinicity at lower levels, yielding only a small poleward expansion of the circulation. Th...

[1]  Eric DeWeaver,et al.  Tropopause height and zonal wind response to global warming in the IPCC scenario integrations , 2007 .

[2]  L. Polvani,et al.  Is climate sensitivity related to dynamical sensitivity? A Southern Hemisphere perspective , 2014 .

[3]  I. Held Large-Scale Dynamics and Global Warming , 1993 .

[4]  Mark D. Zelinka,et al.  Climate Feedbacks and Their Implications for Poleward Energy Flux Changes in a Warming Climate , 2011 .

[5]  Jian Lu,et al.  Correction to “Expansion of the Hadley cell under global warming” , 2007 .

[6]  S. Manabe,et al.  Cloud Feedback Processes in a General Circulation Model , 1988 .

[7]  D. Hartmann,et al.  Southern Hemisphere jet latitude biases in CMIP5 models linked to shortwave cloud forcing , 2012 .

[8]  S. Klein,et al.  The new GFDL global atmosphere and land model AM2-LM2: Evaluation with prescribed SST simulations , 2004 .

[9]  S. Manabe,et al.  The Role of Water Vapor Feedback in Unperturbed Climate Variability and Global Warming , 1999 .

[10]  B. Stevens,et al.  Climate feedback efficiency and synergy , 2013, Climate Dynamics.

[11]  Jeffrey H. Yin,et al.  A consistent poleward shift of the storm tracks in simulations of 21st century climate , 2005 .

[12]  Benjamin Kirtman,et al.  Tropospheric Water Vapor and Climate Sensitivity , 1999 .

[13]  M. Webb,et al.  Mechanisms of the Negative Shortwave Cloud Feedback in Middle to High Latitudes , 2016 .

[14]  C. Bretherton,et al.  Clouds and Aerosols , 2013 .

[15]  D. Frierson,et al.  The Position of the Midlatitude Storm Track and Eddy-Driven Westerlies in Aquaplanet AGCMs , 2010 .

[16]  D. Lorenz Understanding Midlatitude Jet Variability and Change Using Rossby Wave Chromatography: Wave–Mean Flow Interaction , 2014 .

[17]  Harshvardhan,et al.  Thermodynamic constraint on the cloud liquid water feedback in climate models , 1987 .

[18]  D. Lorenz Understanding Midlatitude Jet Variability and Change Using Rossby Wave Chromatography: Poleward-Shifted Jets in Response to External Forcing , 2014 .

[19]  Brian J. Soden,et al.  Quantifying Climate Feedbacks Using Radiative Kernels , 2008 .

[20]  Paul J. Kushner,et al.  Southern Hemisphere Atmospheric Circulation Response to Global Warming , 2001 .

[21]  H. Treut,et al.  Hadley circulation changes under global warming conditions indicated by coupled climate models , 2008 .

[22]  Mark D. Zelinka,et al.  Why is longwave cloud feedback positive , 2010 .

[23]  A. Slingo,et al.  The response of a general circulation model to cloud longwave radiative forcing. I: Introduction and initial experiments , 1988 .

[24]  Mark D. Zelinka,et al.  Computing and Partitioning Cloud Feedbacks Using Cloud Property Histograms. Part II: Attribution to Changes in Cloud Amount, Altitude, and Optical Depth , 2012 .

[25]  T. Shaw,et al.  Circulation response to warming shaped by radiative changes of clouds and water vapour , 2015 .

[26]  D. Hartmann,et al.  Observed Southern Ocean Cloud Properties and Shortwave Reflection. Part I: Calculation of SW Flux from Observed Cloud Properties* , 2014 .

[27]  Olivier Boucher,et al.  Adjustments in the Forcing-Feedback Framework for Understanding Climate Change , 2014 .

[28]  Jian Lu,et al.  Width of the Hadley cell in simple and comprehensive general circulation models , 2007 .

[29]  A. Slingo,et al.  The response of a general circulation model to cloud longwave radiative forcing. II: Further studies , 1991 .

[30]  T. Mauritsen,et al.  Arctic amplification dominated by temperature feedbacks in contemporary climate models , 2014 .

[31]  L. Donner,et al.  Radiative forcing of stationary planetary waves , 1984 .

[32]  E. Gerber,et al.  Intermodel variability of the poleward shift of the austral jet stream in the CMIP3 integrations linked to biases in 20th century climatology , 2010 .

[33]  Brian J. Hoskins,et al.  The Storm-Track Response to Idealized SST Perturbations in an Aquaplanet GCM , 2008 .

[34]  B. Soden,et al.  Robust Responses of the Hydrological Cycle to Global Warming , 2006 .

[35]  M. Zelinka,et al.  The response of the Southern Hemispheric eddy‐driven jet to future changes in shortwave radiation in CMIP5 , 2014 .

[36]  Isaac M. Held,et al.  A Gray-Radiation Aquaplanet Moist GCM. Part I: Static Stability and Eddy Scale , 2006 .

[37]  G. Vallis,et al.  Response of the large‐scale structure of the atmosphere to global warming , 2015 .

[38]  S. Bony,et al.  On the interpretation of inter-model spread in CMIP5 climate sensitivity estimates , 2013, Climate Dynamics.

[39]  Syukuro Manabe,et al.  Cloud cover and climate sensitivity. , 1980 .

[40]  E. Chang,et al.  CMIP5 multimodel ensemble projection of storm track change under global warming , 2012 .

[41]  D. Hartmann,et al.  On the Speed of the Eddy-Driven Jet and the Width of the Hadley Cell in the Southern Hemisphere , 2012 .

[42]  D. Frierson,et al.  Extratropical Influence on ITCZ Shifts in Slab Ocean Simulations of Global Warming , 2012 .

[43]  Dennis L. Hartmann,et al.  An important constraint on tropical cloud ‐ climate feedback , 2002 .

[44]  B. McAvaney,et al.  A study of general circulation model climate feedbacks determined from perturbed sea surface temperature experiments , 1997 .

[45]  I. Held,et al.  Phase speed spectra and the recent poleward shift of Southern Hemisphere surface westerlies , 2007 .

[46]  Yoko Tsushima,et al.  Importance of the mixed-phase cloud distribution in the control climate for assessing the response of clouds to carbon dioxide increase: a multi-model study , 2006 .

[47]  R. Seager,et al.  A Diagnosis of the Seasonally and Longitudinally Varying Midlatitude Circulation Response to Global Warming , 2014 .

[48]  A. J. Batista-Leyva,et al.  On the interpretation of , 2004 .

[49]  Jian Lu,et al.  Sensitivities of zonal mean atmospheric circulation to SST warming in an aqua‐planet model , 2010 .

[50]  L. Shaffrey,et al.  Equator-to-pole temperature differences and the extra-tropical storm track responses of the CMIP5 climate models , 2014, Climate Dynamics.

[51]  G. Vecchi,et al.  Global Warming and the Weakening of the Tropical Circulation , 2007 .

[52]  S. Bony,et al.  The Influence of Atmospheric Cloud Radiative Effects on the Large-Scale Stratospheric Circulation , 2017 .

[53]  R. Heikes,et al.  The Steady-State Atmospheric Circulation Response to Climate Change–like Thermal Forcings in a Simple General Circulation Model , 2010 .

[54]  T. Merlis Interacting components of the top‐of‐atmosphere energy balance affect changes in regional surface temperature , 2014 .

[55]  D. Frierson,et al.  Increasing atmospheric poleward energy transport with global warming , 2010 .

[56]  D. Frierson,et al.  The remote impacts of climate feedbacks on regional climate predictability , 2015 .

[57]  D. Hartmann,et al.  Observed Southern Ocean Cloud Properties and Shortwave Reflection. Part II: Phase Changes and Low Cloud Feedback* , 2014 .

[58]  George Tselioudis,et al.  Global Patterns of Cloud Optical Thickness Variation with Temperature and the Implications for Climate Change. , 1992 .

[59]  S. Manabe,et al.  Time-Mean Response over the Tropical Pacific to Increased C02 in a Coupled Ocean-Atmosphere Model , 1995 .

[60]  Elizabeth A. Barnes,et al.  Response of the Midlatitude Jets, and of Their Variability, to Increased Greenhouse Gases in the CMIP5 Models , 2013 .

[61]  John F. B. Mitchell,et al.  Carbon Dioxide and Climate. The Impact of Cloud Parameterization , 1993 .

[62]  S. Bony,et al.  Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models , 2005 .

[63]  G. Roe,et al.  The Nonlinear and Nonlocal Nature of Climate Feedbacks , 2013 .

[64]  T. Mauritsen,et al.  Separation of Contributions from Radiative Feedbacks to Polar Amplification on an Aquaplanet , 2012 .

[65]  G. Plass Carbon dioxide and climate. , 1959, Scientific American.

[66]  M. Huber,et al.  Spontaneous transition to superrotation in warm climates simulated by CAM3 , 2010 .

[67]  J. Kay,et al.  Coupling between Arctic feedbacks and changes in poleward energy transport , 2011 .

[68]  D. Hartmann Global Physical Climatology , 1994 .