Fabrication, microstructure, and mechanical properties of tin nanostructures

[1]  J. E. Dorn,et al.  ACTIVATION ENERGIES FOR CREEP OF CADMIUM, INDIUM, AND TIN. Technical Report No. 36 , 1954 .

[2]  J. Weertman,et al.  Creep of Tin Single Crystals , 1956 .

[3]  Oleg D. Sherby,et al.  Factors affecting the high temperature strength of polcyrystalline solids , 1962 .

[4]  J. W. Morris,et al.  Harper-dorn creep in al, pb, and sn , 1973 .

[5]  J.C.M. Li,et al.  Impression creep of β-tin single crystals , 1979 .

[6]  William D. Nix,et al.  A micro-indentation study of superplasticity in Pb, Sn, and Sn-38 wt% Pb , 1988 .

[7]  Muneo Nagasaka Temperature Dependence of Plastic Deformation in White Tin Single Crystals , 1989 .

[8]  V. Raman,et al.  An investigation of the creep processes in tin and aluminum using a depth-sensing indentation technique , 1992 .

[9]  J. Glazer Metallurgy of low temperature Pb-free solders for electronic assembly , 1995 .

[10]  M. Abtew,et al.  Lead-free Solders in Microelectronics , 2000 .

[11]  William J. Plumbridge,et al.  Solders as high temperature engineering materials , 2000 .

[12]  J. R. Patel,et al.  Scanning X-ray microdiffraction with submicrometer white beam for strain/stress and orientation mapping in thin films. , 2003, Journal of synchrotron radiation.

[13]  T. Mallouk,et al.  Synthesis and characterization of superconducting single-crystal Sn nanowires , 2003 .

[14]  D. Dimiduk,et al.  Sample Dimensions Influence Strength and Crystal Plasticity , 2004, Science.

[15]  B. Schmitt,et al.  Plastic Deformation with Reversible Peak Broadening in Nanocrystalline Nickel , 2004, Science.

[16]  Julia R. Greer,et al.  Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients , 2005 .

[17]  Michael D. Uchic,et al.  A methodology to investigate size scale effects in crystalline plasticity using uniaxial compression testing , 2005 .

[18]  Michael D. Uchic,et al.  Size-affected single-slip behavior of pure nickel microcrystals , 2005 .

[19]  Julia R. Greer,et al.  Size dependence of mechanical properties of gold at the sub-micron scale , 2005 .

[20]  T. Osaka,et al.  Structural and morphological modifications of a nanosized 62 atom percent Sn-Ni thin film anode during reaction with lithium , 2005 .

[21]  D. Gall,et al.  High‐Temperature Tribological Behavior of CrN‐Ag Self‐lubricating Coatings , 2006 .

[22]  C. A. Volkert,et al.  Size effects in the deformation of sub-micron Au columns , 2006 .

[23]  J. Li,et al.  Deformation behavior of tin and some tin alloys , 2006 .

[24]  G. Pharr,et al.  Compressive strengths of molybdenum alloy micro-pillars prepared using a new technique , 2007 .

[25]  J. R. Patel,et al.  Indentation size effects in single crystal copper as revealed by synchrotron x-ray microdiffraction , 2008 .

[26]  A. Ngan,et al.  Stochastic nature of plasticity of aluminum micro-pillars , 2008 .

[27]  G. Pharr,et al.  Effects of pre-strain on the compressive stress-strain response of Mo-alloy single-crystal micropillars , 2008 .

[28]  C. Jia,et al.  Atomic structure of the interface between SrTiO3 thin films and Si(001) substrates , 2008 .

[29]  Andrew M Minor,et al.  Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. , 2008, Nature materials.

[30]  Reinhard Pippan,et al.  A further step towards an understanding of size-dependent crystal plasticity: In situ tension experiments of miniaturized single-crystal copper samples , 2008 .

[31]  Julia R. Greer,et al.  Comparing the strength of f.c.c. and b.c.c. sub-micrometer pillars: Compression experiments and dislocation dynamics simulations , 2008 .

[32]  Blythe G. Clark,et al.  Size effect on strength and strain hardening of small-scale [111] nickel compression pillars , 2008 .

[33]  J. Greer,et al.  Fundamental differences in mechanical behavior between two types of crystals at the nanoscale. , 2008, Physical review letters.

[34]  J. R. Patel,et al.  A search for evidence of strain gradient hardening in Au submicron pillars under uniaxial compression using synchrotron X-ray microdiffraction , 2008 .

[35]  D. Dimiduk,et al.  Plasticity of Micrometer-Scale Single-Crystals in Compression: A Critical Review (PREPRINT) , 2008 .

[36]  Blythe G. Clark,et al.  Effect of orientation and loading rate on compression behavior of small-scale Mo pillars , 2009 .

[37]  J. Greer,et al.  Emergence of New Mechanical Functionality in Materials via Size Reduction , 2009 .

[38]  J. Greer,et al.  The in-situ mechanical testing of nanoscale single-crystalline nanopillars , 2009 .

[39]  Julia R. Greer,et al.  Insight into the deformation behavior of niobium single crystals under uniaxial compression and tension at the nanoscale , 2009 .

[40]  Julia R. Greer,et al.  Tensile and compressive behavior of gold and molybdenum single crystals at the nano-scale , 2009 .

[41]  S. Han,et al.  Uniaxial compression of fcc Au nanopillars on an MgO substrate: The effects of prestraining and annealing , 2009 .

[42]  E. Arzt,et al.  Correlation between critical temperature and strength of small-scale bcc pillars. , 2009, Physical review letters.

[43]  J. Greer,et al.  Microstructure versus size: mechanical properties of electroplated single crystalline Cu nanopillars. , 2010, Physical review letters.

[44]  M. Kunz,et al.  Fabrication, structure and mechanical properties of indium nanopillars , 2010 .

[45]  Julia R Greer,et al.  Fabrication and microstructure control of nanoscale mechanical testing specimens via electron beam lithography and electroplating. , 2010, Nano letters.

[46]  Julia R. Greer,et al.  Tensile and compressive behavior of tungsten, molybdenum, tantalum and niobium at the nanoscale , 2010 .

[47]  S. Han,et al.  Size effects on strength and plasticity of vanadium nanopillars , 2010 .

[48]  Jie Xiong,et al.  Growth and structural characterization of epitaxial Cu/Nb multilayers , 2011 .