Threshold and laser-conversion in nanostructured-resonator parametric oscillators

We explore optical parametric oscillation (OPO) in nanophotonic resonators, enabling arbitrary, nonlinear phase-matching and nearly lossless control of energy conversion. Such pristine OPO laser converters are determined by nonlinear light-matter interactions, making them both technologically flexible and broadly reconfigurable. We utilize a nanostructured inner-wall modulation in the resonator to achieve universal phase-matching for OPO-laser conversion, but coherent backscattering also induces a counterpropagating pump laser. This depletes the intra-resonator optical power in either direction, increasing the OPO threshold power and limiting laser-conversion efficiency, the ratio of optical power in target signal and idler frequencies to the pump. We develop an analytical model of this system that emphasizes an understanding of optimal laser conversion and threshold behaviors, and we use the model to guide experiments with nanostructured-resonator OPO laser-conversion circuits, fully integrated on chip and unlimited by group-velocity dispersion. Our work demonstrates the fundamental connection between OPO laser-conversion efficiency and the resonator coupling rate, subject to the relative phase and power of counterpropagating pump fields. We achieve $(40\pm4)$ mW of on-chip power, corresponding to $(41\pm4)$% conversion efficiency, and discover a path toward near-unity OPO laser conversion efficiency.

[1]  F. Zhou,et al.  High-performance Kerr microresonator optical parametric oscillator on a silicon chip , 2022, Nature Communications.

[2]  K. Srinivasan,et al.  Efficient chip-based optical parametric oscillators from 590 nm to 1150 nm. , 2022, Optica.

[3]  V. Torres‐Company,et al.  Hyperparametric Oscillation via Bound States in the Continuum. , 2022, Physical review letters.

[4]  J. Zang,et al.  Near Unit Efficiency in Microresonator Combs , 2022, 2022 Conference on Lasers and Electro-Optics (CLEO).

[5]  K. Vahala,et al.  Architecture for microcomb-based GHz-mid-infrared dual-comb spectroscopy , 2021, Nature Communications.

[6]  K. Srinivasan,et al.  Hybrid‐Mode‐Family Kerr Optical Parametric Oscillation for Robust Coherent Light Generation on Chip , 2021, Laser & Photonics Reviews.

[7]  K. Srinivasan,et al.  Conversion efficiency in Kerr microresonator optical parametric oscillators: From three modes to many modes. , 2021, Optica.

[8]  J. Zang,et al.  A continuum of bright and dark-pulse states in a photonic-crystal resonator , 2021, Nature Communications.

[9]  Renato R. Domeneguetti,et al.  Parametric sideband generation in CMOS-compatible oscillators from visible to telecom wavelengths , 2021 .

[10]  Grant M. Brodnik,et al.  Optically synchronized fibre links using spectrally pure chip-scale lasers , 2021, Nature Photonics.

[11]  Richelle H. Streater,et al.  Group-velocity-dispersion engineering of tantala integrated photonics. , 2020, Optics letters.

[12]  T. C. Briles,et al.  Tantala Kerr nonlinear integrated photonics , 2020, 2007.12958.

[13]  D. Skryabin Hierarchy of coupled mode and envelope models for bi-directional microresonators with Kerr nonlinearity , 2020, 2005.00677.

[14]  K. Srinivasan,et al.  On-chip optical parametric oscillation into the visible: generating red, orange, yellow, and green from a near-infrared pump. , 2020, Optica.

[15]  H. Tang,et al.  Widely separated optical Kerr parametric oscillation in AlN microrings. , 2020, Optics letters.

[16]  K. Srinivasan,et al.  Spontaneous pulse formation in edgeless photonic crystal resonators , 2020, Nature Photonics.

[17]  Kerry J. Vahala,et al.  Earth rotation measured by a chip-scale ring laser gyroscope , 2020, Nature Photonics.

[18]  S. Papp,et al.  Generating Octave-Bandwidth Soliton Frequency Combs with Compact Low-Power Semiconductor Lasers , 2020, 2001.07775.

[19]  K. Srinivasan,et al.  Milliwatt-threshold visible-telecom optical parametric oscillation using silicon nanophotonics. , 2019, Optica.

[20]  K. Srinivasan,et al.  Photonic-Crystal-Reflector Nanoresonators for Kerr-Frequency Combs , 2019, ACS Photonics.

[21]  Miro Erkintalo,et al.  Octave-spanning tunable parametric oscillation in crystalline Kerr microresonators , 2019, Nature Photonics.

[22]  P. Andrekson,et al.  High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators , 2018, Nature Communications.

[23]  S. Coen,et al.  Widely tunable optical parametric oscillation in a Kerr microresonator. , 2017, Optics letters.

[24]  R. Morandotti,et al.  Micro-combs: A novel generation of optical sources , 2017 .

[25]  Kerry J. Vahala,et al.  Microresonator soliton dual-comb spectroscopy , 2016, Science.

[26]  M. Gorodetsky,et al.  Dissipative Kerr solitons in optical microresonators , 2015, Science.

[27]  Jian Wang,et al.  Mode-locked dark pulse Kerr combs in normal-dispersion microresonators , 2015, Nature Photonics.

[28]  Y. De Decker,et al.  Pigment cell movement is not required for generation of Turing patterns in zebrafish skin , 2015, Nature Communications.

[29]  Steven A. Miller,et al.  Tunable frequency combs based on dual microring resonators , 2015, 2015 Conference on Lasers and Electro-Optics (CLEO).

[30]  Xiaoxiao Xue,et al.  Normal‐dispersion microcombs enabled by controllable mode interactions , 2015, 1503.06142.

[31]  Qiang Lin,et al.  Selective engineering of cavity resonance for frequency matching in optical parametric processes , 2014, 1407.4488.

[32]  Laurent Larger,et al.  Azimuthal Turing Patterns, Bright and Dark Cavity Solitons in Kerr Combs Generated With Whispering-Gallery-Mode Resonators , 2013, IEEE Photonics Journal.

[33]  K. Vahala,et al.  Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. , 2004, Physical review letters.

[34]  Y. Amarouchene,et al.  Dynamic sand dunes. , 2001, Physical review letters.

[35]  H. Herrmann,et al.  Minimal model for sand dunes. , 2001, Physical review letters.

[36]  Grant M. Brodnik,et al.  Optical-parametric oscillation in photonic-crystal ring resonators , 2022 .