Moving object detection based on incremental learning low rank representation and spatial constraint

Background modeling and subtraction, the task to detect moving objects in a scene, is an important step in video analysis. In this paper, we present a novel moving object detection method based on Online Low Rank Matrix Recovery and graph cut from monocular video sequences. First, use the K-SVD method to initialize the dictionary to construct the background model, perform foreground detection with augmented Lagrange multipliers (ALM) and refine foreground values by spatial smooth constraint to extract the background and foreground information; Then obtain the clusters of foreground and background respectively using mean shift clustering on the background and foreground information; Third, initialize the S/T Network with corresponding image pixels as nodes (except S/T node); Calculate the data and smoothness term of graph; Finally, use max flow/minimum cut to segmentation S/T network to extract the motion objects. Online dictionary learning is adopted to update the background model. Experimental results on indoor and outdoor videos demonstrate the efficiency of our proposed method.

[1]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Yong Yu,et al.  Robust Recovery of Subspace Structures by Low-Rank Representation , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Nenghai Yu,et al.  Non-negative low rank and sparse graph for semi-supervised learning , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[4]  M. Elad,et al.  $rm K$-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation , 2006, IEEE Transactions on Signal Processing.

[5]  Zhixun Su,et al.  Linearized Alternating Direction Method with Adaptive Penalty for Low-Rank Representation , 2011, NIPS.

[6]  Marie-Pierre Jolly,et al.  Interactive Graph Cuts for Optimal Boundary and Region Segmentation of Objects in N-D Images , 2001, ICCV.

[7]  Thierry Bouwmans,et al.  Recent Advanced Statistical Background Modeling for Foreground Detection - A Systematic Survey , 2011 .

[8]  D. R. Fulkerson,et al.  Flows in Networks. , 1964 .

[9]  Marc Van Droogenbroeck,et al.  ViBe: A Universal Background Subtraction Algorithm for Video Sequences , 2011, IEEE Transactions on Image Processing.

[10]  W. Eric L. Grimson,et al.  Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[11]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[12]  Alex Pentland,et al.  Pfinder: real-time tracking of the human body , 1996, Proceedings of the Second International Conference on Automatic Face and Gesture Recognition.

[13]  Marie-Pierre Jolly,et al.  Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[14]  Marko Heikkilä,et al.  A texture-based method for modeling the background and detecting moving objects , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  A. Bruckstein,et al.  K-SVD : An Algorithm for Designing of Overcomplete Dictionaries for Sparse Representation , 2005 .

[17]  Thierry Bouwmans,et al.  Type-2 Fuzzy Mixture of Gaussians Model: Application to Background Modeling , 2008, ISVC.

[18]  Benjamin Höferlin,et al.  Evaluation of background subtraction techniques for video surveillance , 2011, CVPR 2011.

[19]  Alex Pentland,et al.  A Bayesian Computer Vision System for Modeling Human Interactions , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Dimitri P. Bertsekas,et al.  Constrained Optimization and Lagrange Multiplier Methods , 1982 .

[21]  Qi Tian,et al.  Statistical modeling of complex backgrounds for foreground object detection , 2004, IEEE Transactions on Image Processing.

[22]  Dorin Comaniciu,et al.  An Algorithm for Data-Driven Bandwidth Selection , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Yi Ma,et al.  The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices , 2010, Journal of structural biology.

[24]  Ahmed M. Elgammal Background Subtraction: Theory and Practice , 2014, Background Subtraction: Theory and Practice.

[25]  Thierry Bouwmans,et al.  Background Modeling using Mixture of Gaussians for Foreground Detection - A Survey , 2008 .

[26]  Lucia Maddalena,et al.  The SOBS algorithm: What are the limits? , 2012, 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[27]  Xiaowei Zhou,et al.  Moving Object Detection by Detecting Contiguous Outliers in the Low-Rank Representation , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Stephen P. Boyd,et al.  A rank minimization heuristic with application to minimum order system approximation , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[29]  Yizong Cheng,et al.  Mean Shift, Mode Seeking, and Clustering , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Zoran Zivkovic,et al.  Improved adaptive Gaussian mixture model for background subtraction , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[31]  Xin Jin,et al.  Mean Shift , 2017, Encyclopedia of Machine Learning and Data Mining.

[32]  Gerhard Rigoll,et al.  Background segmentation with feedback: The Pixel-Based Adaptive Segmenter , 2012, 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[33]  R. Tibshirani,et al.  PATHWISE COORDINATE OPTIMIZATION , 2007, 0708.1485.

[34]  Victor Vianu,et al.  Invited articles section foreword , 2010, JACM.

[35]  Larry S. Davis,et al.  Non-parametric Model for Background Subtraction , 2000, ECCV.