The Luenberger indicator and directions of measurement: a bottoms-up approach with an empirical illustration to German savings banks

The Luenberger productivity indicator applies directional distance functions which allow to specifying in what direction (i.e. direction of measurement) the operating units will be evaluated. In the presence of a change in the direction of measurement, the standard components of the existing Luenberger productivity indicator may provide values which are not compatible with reality. In order to eliminate this pitfall, the so-called bottoms-up approach is used to revisit the definition of the indicator and its components. We start with a list of selected sources of productivity change, namely efficiency change, technical change and direction change, then examine the best possible way of measuring each of the sources and combine them to derive a new measure of productivity change. The proposed indicator will be illustrated by means of an empirical application to a panel of 417 German saving banks over the time period 2006-2012. The example explains how the proposed approach is able to properly measure efficiency change, technical change and direction change. The results also provide conclusive evidence about the effect of the change in direction of measurement on the results of the productivity over time in a centralized management scenario.

[1]  William L. Weber,et al.  A note on efficiency and productivity growth in the Korean Banking Industry, 1992–2002 , 2006 .

[2]  Shawna Grosskopf,et al.  Some Remarks on Productivity and its Decompositions , 2003 .

[3]  David C. Wheelock,et al.  PUBLISHED: Journal of Money, Credit and Banking, , 1996 .

[4]  Emmanuel Thanassoulis,et al.  Malmquist-type indices in the presence of negative data: An application to bank branches , 2010 .

[5]  R. Färe,et al.  Productivity Growth, Technical Progress, and Efficiency Change in Industrialized Countries , 1994 .

[6]  Sung-Ko Li,et al.  Measuring the productive efficiency of a group of firms , 1995 .

[7]  Simone Gitto,et al.  Bootstrapping the Malmquist indexes for Italian airports , 2012 .

[8]  Kim Langfield-Smith,et al.  Management control systems and strategy: A critical review☆ , 1997 .

[9]  Francisco Javier Ramos-Real,et al.  Firm size and productivity. Evidence from the electricity distribution industry in Brazil , 2011 .

[10]  Lan Xu,et al.  Theoretical and Empirical Studies of Productivity Growth in the Agricultural Economics –– Cases of China and the United States , 2012 .

[11]  Victoria Shestalova,et al.  Sequential Malmquist Indices of Productivity Growth: An Application to OECD Industrial Activities , 2003 .

[12]  Yao Chen A non-radial Malmquist productivity index with an illustrative application to Chinese major industries , 2003 .

[13]  Abraham Charnes,et al.  Measuring the efficiency of decision making units , 1978 .

[14]  Fotios Pasiouras,et al.  Assessing Bank Efficiency and Performance with Operational Research and Artificial Intelligence Techniques: A Survey , 2009, Eur. J. Oper. Res..

[15]  Emili Grifell-Tatjé,et al.  Profits and Productivity , 1999 .

[16]  Mette Asmild,et al.  Combining DEA Window Analysis with the Malmquist Index Approach in a Study of the Canadian Banking Industry , 2004 .

[17]  J. T. Pastor,et al.  A Quasi-Malmquist Productivity Index , 1998 .

[18]  Rolf Färe,et al.  Productivity and Undesirable Outputs: A Directional Distance Function Approach , 1995 .

[19]  L. R. Christensen,et al.  THE ECONOMIC THEORY OF INDEX NUMBERS AND THE MEASUREMENT OF INPUT, OUTPUT, AND PRODUCTIVITY , 1982 .

[20]  Joseph C. Paradi,et al.  A survey on bank branch efficiency and performance research with data envelopment analysis , 2013 .

[21]  J. Pastor,et al.  A global Malmquist productivity index , 2005 .

[22]  Walter P. Wodchis,et al.  Efficiency and technological change in health care services in Ontario , 2011 .

[23]  Rolf Färe,et al.  Environmental Performance : an Index Number Approach , 2004 .

[24]  B. Balk Scale Efficiency and Productivity Change , 2001 .

[25]  R. Färe,et al.  Theory and Application of Directional Distance Functions , 2000 .

[26]  B. Yawe,et al.  Total factor productivity growth in Uganda's telecommunications industry , 2011 .

[27]  Emmanuel Thanassoulis,et al.  Negative data in DEA: a directional distance approach applied to bank branches , 2004, J. Oper. Res. Soc..

[28]  G. Battese,et al.  A Metafrontier Production Function for Estimation of Technical Efficiencies and Technology Gaps for Firms Operating Under Different Technologies , 2004 .

[29]  Joe Zhu,et al.  Within-group common weights in DEA: An analysis of power plant efficiency , 2007, Eur. J. Oper. Res..

[30]  S. Lozano,et al.  Centralized Resource Allocation Using Data Envelopment Analysis , 2004 .

[31]  Finn R. Førsund,et al.  Malmquist Indices of Productivity Growth during the Deregulation of Norwegian Banking, 1980-89 , 1992 .

[32]  Mieko Nishimizu Total factor productivity growth, technological progress and technical efficiency change : dimensions of productivity change in Yugoslavia, 1965-1978 , 1982 .

[33]  S. Ray,et al.  PRODUCTIVITY GROWTH, TECHNICAL PROGRESS AND EFFICIENCY CHANGE IN INDUSTRIALIZED COUNTRIES: COMMENT , 1997 .

[34]  J. Pastor,et al.  Centralized resource allocation BCC models , 2009 .

[35]  Shawna Grosskopf,et al.  The Role of the Reference Technology in Measuring Productive Efficiency , 1986 .

[36]  Ελένη Τοπαλίδου Management Control Systems and Strategy , 2015 .

[37]  A. Charnes,et al.  Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis , 1984 .

[38]  Ali Emrouznejad,et al.  A Performance Assessment Method for Hospitals: The Case of Municipal Hospitals in Angola , 2008, Journal of Medical Systems.

[39]  R. F. Aghdam,et al.  Dynamics of productivity change in the Australian electricity industry: Assessing the impacts of electricity reform , 2011 .

[40]  Heinz Ahn,et al.  Measuring the relative balance of DMUs , 2012, Eur. J. Oper. Res..

[41]  Emmanuel Thanassoulis,et al.  Productivity change in the water industry in England and Wales: application of the meta-Malmquist index , 2011, J. Oper. Res. Soc..

[42]  M. Farrell The Measurement of Productive Efficiency , 1957 .

[43]  S. Berg,et al.  Benchmarking Central American Water Utilities , 2009 .

[44]  R. Färe,et al.  Productivity changes in Swedish pharamacies 1980–1989: A non-parametric Malmquist approach , 1992 .

[45]  R. Färe,et al.  Profit, Directional Distance Functions, and Nerlovian Efficiency , 1998 .

[46]  A. Athanassopoulos Goal programming & data envelopment analysis (GoDEA) for target-based multi-level planning: Allocating central grants to the Greek local authorities , 1995 .

[47]  Alice Shiu,et al.  Economic growth, telecommunications development and productivity growth of the telecommunications sector: Evidence around the world , 2010 .

[48]  Lei Fang,et al.  A generalized DEA model for centralized resource allocation , 2013, Eur. J. Oper. Res..

[49]  Mette Asmild,et al.  The biennial Malmquist productivity change index , 2011 .

[50]  Juan Aparicio,et al.  On the inconsistency of the Malmquist-Luenberger index , 2013, Eur. J. Oper. Res..

[51]  H. Bruton Total Factor Productivity Growth , 1995 .

[52]  E. Fernandes,et al.  Malmquist financial efficiency analysis for airlines , 2012 .

[53]  Paul W. Wilson,et al.  Effects of Deregulation on the Productivity of Korean Banks , 1998 .

[54]  Sai S. Nudurupati,et al.  State of the art literature review on performance measurement , 2011, Comput. Ind. Eng..

[55]  Chiang Kao,et al.  Malmquist productivity index based on common-weights DEA: The case of Taiwan forests after reorganization , 2010 .