Relation between PVM schemes and simple Riemann solvers
暂无分享,去创建一个
Carlos Parés | Tomás Morales de Luna | Manuel Díaz | C. Parés | T. Morales de Luna | M. C. Castro Díaz
[1] Pierre Degond,et al. Polynomial upwind schemes for hyperbolic systems , 1999 .
[2] Carlos Parés,et al. A HLLC scheme for nonconservative hyperbolic problems. Application to turbidity currents with sediment transport , 2013 .
[3] C. Parés. Numerical methods for nonconservative hyperbolic systems: a theoretical framework. , 2006 .
[4] Eleuterio F. Toro,et al. Centred TVD schemes for hyperbolic conservation laws , 2000 .
[5] I. Toumi. A weak formulation of roe's approximate riemann solver , 1992 .
[6] Eleuterio F. Toro,et al. MUSTA fluxes for systems of conservation laws , 2006, J. Comput. Phys..
[7] Tomás Morales de Luna,et al. Semi-discrete Entropy Satisfying Approximate Riemann Solvers. The Case of the Suliciu Relaxation Approximation , 2009, J. Sci. Comput..
[8] Manuel Jesús Castro Díaz,et al. A Class of Computationally Fast First Order Finite Volume Solvers: PVM Methods , 2012, SIAM J. Sci. Comput..
[9] Carlos Parés,et al. NUMERICAL TREATMENT OF WET/DRY FRONTS IN SHALLOW FLOWS WITH A MODIFIED ROE SCHEME , 2006 .
[10] Frédéric Coquel,et al. Modified Suliciu relaxation system and exact resolution of isolated shock waves , 2014 .
[11] Carlos Parés,et al. On the well-balance property of Roe?s method for nonconservative hyperbolic systems , 2004 .
[12] Eleuterio F. Toro,et al. On some fast well-balanced first order solvers for nonconservative systems , 2009, Math. Comput..
[13] Emmanuel Audusse,et al. A Fast and Stable Well-Balanced Scheme with Hydrostatic Reconstruction for Shallow Water Flows , 2004, SIAM J. Sci. Comput..