Implementation of microchip electrophoresis instrumentation for future spaceflight missions

We present a comprehensive discussion of the role that microchip electrophoresis (ME) instrumentation could play in future NASA missions of exploration, as well as the current barriers that must be overcome to make this type of chemical investigation possible. We describe how ME would be able to fill fundamental gaps in our knowledge of the potential for past, present, or future life beyond Earth. Despite the great promise of ME for ultrasensitive portable chemical analysis, to date, it has never been used on a robotic mission of exploration to another world. We provide a current snapshot of the technology readiness level (TRL) of ME instrumentation, where the TRL is the NASA systems engineering metric used to evaluate the maturity of technology, and its fitness for implementation on missions. We explain how the NASA flight implementation process would apply specifically to ME instrumentation, and outline the scientific and technology development issues that must be addressed for ME analyses to be performed successfully on another world. We also outline research demonstrations that could be accomplished by independent researchers to help advance the TRL of ME instrumentation for future exploration missions. The overall approach described here for system development could be readily applied to a wide range of other instrumentation development efforts having broad societal and commercial impact.

[1]  J. van der Greef,et al.  The role of analytical sciences in medical systems biology. , 2004, Current opinion in chemical biology.

[2]  M. Hecht,et al.  The oxidation‐reduction potential of aqueous soil solutions at the Mars Phoenix landing site , 2011 .

[3]  Carol R. Stoker,et al.  Astrobiology and habitability studies in preparation for future Mars missions: trends from investigating minerals, organics and biota , 2011, International Journal of Astrobiology.

[4]  Christian Wohlfarth,et al.  Static Dielectric Constants of Pure Liquids and Binary Liquid Mixtures: Supplement to IV/6 , 2008 .

[5]  D. J. Harrison,et al.  Capillary electrophoresis and sample injection systems integrated on a planar glass chip , 1992 .

[6]  Christopher P. McKay,et al.  Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars , 2010 .

[7]  Philippe Lognonné,et al.  The present-day atmosphere of Mars: Where does it come from? , 2009 .

[8]  J. F. McNabb,et al.  Equivalence of microbial biomass measures based on membrane lipid and cell wall components, adenosine triphosphate, and direct counts in subsurface aquifer sediments , 1988, Microbial Ecology.

[9]  M. Kaljurand Analytical separations in harsh environments , 2014 .

[10]  S. Pizzarello,et al.  Amino acids in meteorites. , 1983, Advances in space research : the official journal of the Committee on Space Research.

[11]  Á. Somogyi,et al.  Titan's primordial soup: formation of amino acids via low-temperature hydrolysis of tholins. , 2009, Astrobiology.

[12]  Richard A Mathies,et al.  An integrated microfluidic processor for single nucleotide polymorphism-based DNA computing. , 2005, Lab on a chip.

[13]  A. Knoll,et al.  The Opportunity Rover's Athena Science Investigation at Meridiani Planum, Mars , 2004, Science.

[14]  D. Blake,et al.  The influence of mineralogy on recovering organic acids from Mars analogue materials using the “one-pot” derivatization experiment on the Sample Analysis at Mars (SAM) instrument suite , 2012 .

[15]  Christopher P McKay,et al.  The search for life in our Solar System and the implications for science and society , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[16]  P. Willis,et al.  Titan tholins: simulating Titan organic chemistry in the Cassini-Huygens era. , 2012, Chemical reviews.

[17]  R. Mathies,et al.  Urey: Mars Organic and Oxidant Detector , 2008 .

[18]  A. Manz,et al.  Present state of microchip electrophoresis: state of the art and routine applications. , 2015, Journal of chromatography. A.

[19]  George M Whitesides,et al.  Reinventing chemistry. , 2015, Angewandte Chemie.

[20]  R. Mathies,et al.  Enhanced amine and amino acid analysis using Pacific Blue and the Mars Organic Analyzer microchip capillary electrophoresis system. , 2009, Analytical chemistry.

[21]  A. Skelley,et al.  Organic amine biomarker detection in the Yungay region of the Atacama Desert with the Urey instrument , 2007 .

[22]  Alan A. Wells,et al.  Beagle 2: the exobiology lander on ESA's 2003 Mars Express mission , 1999, Optics & Photonics.

[23]  A. Hayes,et al.  An asymmetric distribution of lakes on Titan as a possible consequence of orbital forcing , 2009 .

[24]  Andrew Steele,et al.  Searching for life on Mars: selection of molecular targets for ESA's aurora ExoMars mission. , 2007, Astrobiology.

[25]  M. Buehler,et al.  Mars Atmospheric Oxidant Sensor (MAOS): An In-Situ Heterogeneous Chemistry Analysis , 2002 .

[26]  A. Skelley,et al.  Application of the Mars Organic Analyzer to nucleobase and amine biomarker detection. , 2006, Astrobiology.

[27]  J. Arkani‐Hamed Timing of the Martian core dynamo , 2004 .

[28]  Steven B. Hawthorne,et al.  Extraction of organic pollutants from environmental solids with sub- and supercritical water , 1994 .

[29]  Luther W. Beegle,et al.  Instruments for In Situ Sample Analysis , 2009 .

[30]  Bernard H. Foing,et al.  Amino acid photostability on the Martian surface , 2005 .

[31]  Peng Liu,et al.  Integrated portable polymerase chain reaction-capillary electrophoresis microsystem for rapid forensic short tandem repeat typing. , 2007, Analytical chemistry.

[32]  Frank J. Grunthaner,et al.  Subcritical water extraction of amino acids from Atacama Desert soils , 2007 .

[33]  C. Horváth,et al.  The role of liquid chromatography in proteomics. , 2004, Journal of chromatography. A.

[34]  Lucas Blanes,et al.  Recent developments in instrumentation for capillary electrophoresis and microchip‐capillary electrophoresis , 2010, Electrophoresis.

[35]  D P Glavin,et al.  Microfabricated capillary electrophoresis amino acid chirality analyzer for extraterrestrial exploration. , 1999, Analytical chemistry.

[36]  S. Battel,et al.  Electric discharge in the Martian atmosphere, Paschen curves and implications for future missions , 2010 .

[37]  J. Spry Contamination Control and Planetary Protection , 2009 .

[38]  D. J. Harrison,et al.  Micromachining a Miniaturized Capillary Electrophoresis-Based Chemical Analysis System on a Chip , 1993, Science.

[39]  E. Lellouch,et al.  Titan's atmosphere and hypothesized ocean: A reanalysis of the Voyager 1 radio-occultation and IRIS 7.7-μm data , 1989 .

[40]  J. Lovelock,et al.  A Physical Basis for Life Detection Experiments , 1965, Nature.

[41]  D. Ming,et al.  H2O at the Phoenix Landing Site , 2009, Science.

[42]  R. Mathies,et al.  Capillary electrophoresis analysis of organic amines and amino acids in saline and acidic samples using the Mars organic analyzer. , 2009, Astrobiology.

[43]  D. Hunten,et al.  The abundances of constituents of Titan's atmosphere from the GCMS instrument on the Huygens probe , 2005, Nature.

[44]  Mariliza Derveni,et al.  Survivability of immunoassay reagents exposed to the space radiation environment on board the ESA BIOPAN-6 platform as a prelude to performing immunoassays on Mars. , 2013, Astrobiology.

[45]  Sam Bae,et al.  Monolithic Teflon membrane valves and pumps for harsh chemical and low-temperature use. , 2007, Lab on a chip.

[46]  G. Kminek,et al.  MOD: an organic detector for the future robotic exploration of Mars , 2000 .

[47]  Kenneth S. Edgett,et al.  SHERLOC: Scanning habitable environments with Raman & luminescence for organics & chemicals , 2014, 2015 IEEE Aerospace Conference.

[48]  C. Chyba,et al.  Possible ecosystems and the search for life on Europa. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[49]  P. Mahaffy Exploration of the Habitability of Mars: Development of Analytical Protocols for Measurement of Organic Carbon on the 2009 Mars Science Laboratory , 2008 .

[50]  Rosaly M. C. Lopes,et al.  Cassini Encounters Enceladus: Background and the Discovery of a South Polar Hot Spot , 2006, Science.

[51]  P. D. Feldman,et al.  Detection of an oxygen atmosphere on Jupiter's moon Europa , 1995, Nature.

[52]  Michael G. Roper,et al.  A fully integrated microfluidic genetic analysis system with sample-in–answer-out capability , 2006, Proceedings of the National Academy of Sciences.

[53]  P. Willis,et al.  Low-temperature microchip nonaqueous capillary electrophoresis of aliphatic primary amines: applications to Titan chemistry. , 2013, Analytical chemistry.

[54]  Frank J Grunthaner,et al.  Perchlorate radiolysis on Mars and the origin of martian soil reactivity. , 2013, Astrobiology.

[55]  Microchip nonaqueous capillary electrophoresis of saturated fatty acids using a new fluorescent dye , 2014 .

[56]  J. Greer Future Missions to Titan: Scientific and Engineering Challenges , 2011 .

[57]  W. Goddard,et al.  Hypervelocity impact effect of molecules from Enceladus' plume and Titan's upper atmosphere on NASA's Cassini spectrometer from reactive dynamics simulation. , 2012, Physical review letters.

[58]  J. Connerney,et al.  Magnetic field of Mars: Summary of results from the aerobraking and mapping orbits , 2001 .

[59]  Dennis L. Matson,et al.  The Huygens Probe: Science, Payload and Mission Overview , 1997 .

[60]  R. Mathies,et al.  Analysis of carbonaceous biomarkers with the Mars Organic Analyzer microchip capillary electrophoresis system: carboxylic acids. , 2011, Astrobiology.

[61]  Gabriel Tobie,et al.  Titan's internal structure inferred from a coupled thermal-orbital model , 2005 .

[62]  Gerhard Kminek,et al.  The effect of ionizing radiation on the preservation of amino acids on Mars , 2006 .

[63]  R. Rieder,et al.  Chemistry of Rocks and Soils in Gusev Crater from the Alpha Particle X-ray Spectrometer , 2004, Science.

[64]  Erik C Jensen,et al.  Universal microfluidic automaton for autonomous sample processing: application to the Mars Organic Analyzer. , 2013, Analytical chemistry.

[65]  E. Ong,et al.  Pressurized hot water extraction of bioactive or marker compounds in botanicals and medicinal plant materials. , 2006, Journal of chromatography. A.

[66]  A. Zent,et al.  Decomposition of aqueous organic compounds in the Atacama Desert and in Martian soils , 2007 .

[67]  Bryan J. Travis,et al.  Enceladus: Present internal structure and differentiation by early and long-term radiogenic heating , 2007 .

[68]  R. Kirk,et al.  The lakes of Titan , 2006, Nature.

[69]  W. Ip,et al.  Cassini Ion and Neutral Mass Spectrometer: Enceladus Plume Composition and Structure , 2006, Science.

[70]  Spencer,et al.  Temperatures on europa from galileo photopolarimeter-radiometer: nighttime thermal anomalies , 1999, Science.

[71]  A. Skelley,et al.  Chiral separation of fluorescamine-labeled amino acids using microfabricated capillary electrophoresis devices for extraterrestrial exploration. , 2003, Journal of chromatography. A.

[72]  Paul D. Feldman,et al.  Transient Water Vapor at Europa’s South Pole , 2014, Science.

[73]  Olivier Grasset,et al.  On the internal structure and dynamics of Titan , 1998 .

[74]  C. McKay,et al.  The limitations on organic detection in Mars-like soils by thermal volatilization–gas chromatography–MS and their implications for the Viking results , 2006, Proceedings of the National Academy of Sciences.

[75]  A. Vasavada,et al.  Mars’ Surface Radiation Environment Measured with the Mars Science Laboratory’s Curiosity Rover , 2014, Science.

[76]  Richard A Mathies,et al.  Microfluidic serial dilution circuit. , 2006, Analytical chemistry.

[77]  S. Hawthorne,et al.  Subcritical water extraction of antioxidant compounds from rosemary plants. , 2003, Journal of agricultural and food chemistry.

[78]  M. Breadmore Capillary and microchip electrophoresis: challenging the common conceptions. , 2012, Journal of chromatography. A.

[79]  R. V. Morris,et al.  X-ray Diffraction Results from Mars Science Laboratory: Mineralogy of Rocknest at Gale Crater , 2013, Science.

[80]  M. Malin,et al.  Evidence for recent groundwater seepage and surface runoff on Mars. , 2000, Science.

[81]  P. Cassen,et al.  Is there liquid water on Europa , 1979 .

[82]  Pauline Poinot,et al.  Searching for organic compounds in the Universe , 2015 .

[83]  R. Lorenz,et al.  Volatile Origin and Cycles: Nitrogen and Methane , 2009 .

[84]  M. Malin,et al.  Groundwater formation of martian valleys , 1999, Nature.

[85]  Gary Ruvkun,et al.  Radiation resistance of biological reagents for in situ life detection. , 2013, Astrobiology.

[86]  H. Klein The Viking mission and the search for life on Mars , 1979 .

[87]  Roger V. Yelle,et al.  Ion chemistry and N-containing molecules in Titan's upper atmosphere , 2007 .

[88]  M. Lidstrom,et al.  Estimation of methanotroph abundance in a freshwater lake sediment. , 2002, Environmental microbiology.

[89]  M. Mellon,et al.  Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results , 2001 .

[90]  A. Aikin,et al.  C4H2, HC3N and C2N2 in Titan's atmosphere , 1981, Nature.

[91]  S. Jacobson,et al.  High-Speed Separations on a Microchip , 1994 .

[92]  C. Sotin,et al.  Episodic outgassing as the origin of atmospheric methane on Titan , 2005, Nature.

[93]  C. Sagan,et al.  The tide in the seas of Titan , 1982, Nature.

[94]  E. Friedmann,et al.  Endolithic Microorganisms in the Antarctic Cold Desert , 1982, Science.

[95]  F. Grunthaner,et al.  Subcritical water extractor for Mars analog soil analysis. , 2008, Astrobiology.

[96]  S. Hawthorne,et al.  Pilot-scale subcritical water remediation of polycyclic aromatic hydrocarbon- and pesticide-contaminated soil. , 2000 .

[97]  C. Sagan,et al.  Amino acids derived from Titan tholins. , 1986, Icarus.

[98]  J. Barengoltz,et al.  The Validation of Vapor Phase Hydrogen Peroxide Microbial Reduction for Planetary Protection and a Proposed Vacuum Process Specification , 2006 .

[99]  James R. Wertz,et al.  Space Mission Analysis and Design , 1992 .

[100]  R. Mathies,et al.  Polycyclic aromatic hydrocarbon analysis with the Mars organic analyzer microchip capillary electrophoresis system. , 2009, Analytical chemistry.

[101]  L. Beegle,et al.  Sample handling and processing on Mars for future astrobiology missions , 2011, 2011 Aerospace Conference.

[102]  Henry B. Garrett,et al.  Energetic Ion and Electron Irradiation of the Icy Galilean Satellites , 2001 .

[103]  M. Riekkola,et al.  Extraction of polychlorinated biphenyls with water under subcritical conditions , 1997 .

[104]  P. Willis,et al.  Microchip Capillary Electrophoresis for In Situ Planetary Exploration , 2013 .

[105]  Jean-Pierre Lebreton,et al.  An overview of the descent and landing of the Huygens probe on Titan , 2005, Nature.

[106]  Tae Seok Seo,et al.  Integrated capture, concentration, polymerase chain reaction, and capillary electrophoretic analysis of pathogens on a chip. , 2009, Analytical chemistry.

[107]  P. Willis,et al.  Monolithic photolithographically patterned Fluorocur PFPE membrane valves and pumps for in situ planetary exploration. , 2008, Lab on a chip.

[108]  Luther W. Beegle,et al.  Collecting Samples in Gale Crater, Mars; an Overview of the Mars Science Laboratory Sample Acquisition, Sample Processing and Handling System , 2012 .

[109]  William H. Grover,et al.  Development and evaluation of a microdevice for amino acid biomarker detection and analysis on Mars. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[110]  Raymond E. Arvidson,et al.  Overview of the Mars Global Surveyor mission , 2001 .

[111]  Peng Liu,et al.  Real-time forensic DNA analysis at a crime scene using a portable microchip analyzer. , 2008, Forensic science international. Genetics.

[112]  S. Abbas,et al.  Amino acid synthesis in Europa's subsurface environment , 2008, International Journal of Astrobiology.

[113]  Frank Greer,et al.  Toward total automation of microfluidics for extraterrestial in situ analysis. , 2011, Analytical chemistry.

[114]  Bruce Block,et al.  Ion Neutral Mass Spectrometer Results from the First Flyby of Titan , 2005, Science.

[115]  Amitabha Ghosh,et al.  An integrated view of the chemistry and mineralogy of martian soils , 2005, Nature.

[116]  J Michael Ramsey,et al.  Microchip separations in reduced-gravity and hypergravity environments. , 2005, Analytical chemistry.

[117]  Beda A Hofmann,et al.  The Urey instrument: an advanced in situ organic and oxidant detector for Mars exploration. , 2008, Astrobiology.

[118]  C. Hansen,et al.  Enceladus' Water Vapor Plume , 2006, Science.

[119]  Adrian Ponce,et al.  Microflora of extreme arid Atacama Desert soils , 2007 .

[120]  S. Larsen,et al.  The Mars Pathfinder atmospheric structure investigation/meteorology (ASI/MET) experiment. , 1997, Science.

[121]  A. Manz,et al.  Miniaturized total chemical analysis systems: A novel concept for chemical sensing , 1990 .

[122]  D. Ming,et al.  Soluble sulfate in the martian soil at the Phoenix landing site , 2010 .

[123]  Stephen Freeland,et al.  On the evolution of the standard amino-acid alphabet , 2006, Genome Biology.

[124]  Andreas Manz,et al.  Planar glass chips for capillary electrophoresis: repetitive sample injection, quantitation, and separation efficiency , 1993 .

[125]  Pascale Ehrenfreund,et al.  Detection and characterization of oxidizing acids in the Atacama Desert using the Mars Oxidation Instrument , 2005 .

[126]  Clark R. Chapman,et al.  Does Europa have a subsurface ocean? Evaluation of the geological evidence , 1999 .

[127]  Erik C Jensen,et al.  A digital microfluidic platform for the automation of quantitative biomolecular assays. , 2010, Lab on a chip.

[128]  P. Willis,et al.  Analysis of thiols by microchip capillary electrophoresis for in situ planetary investigations , 2013, Electrophoresis.

[129]  William H. Grover,et al.  Monolithic membrane valves and diaphragm pumps for practical large-scale integration into glass microfluidic devices , 2003 .

[130]  Sun Kwok Organic Molecules in the Interstellar Medium , 2011 .

[131]  K. Kriechbaum,et al.  Particle transport and distribution on the Mars Science Laboratory mission: Effects of triboelectric charging , 2009 .

[132]  C. Pillinger,et al.  The microbiology of spacecraft hardware: lessons learned from the planetary protection activities on the Beagle 2 spacecraft. , 2006, Research in microbiology.

[133]  G. Collins Relative rates of fluvial bedrock incision on Titan and Earth , 2005 .

[134]  J. Burns,et al.  Shapes of the saturnian icy satellites and their significance , 2007 .

[135]  Mischa Megens,et al.  Integrated microfluidic bioprocessor for solid phase capture immunoassays. , 2011, Lab on a chip.

[136]  William H. Grover,et al.  Development and multiplexed control of latching pneumatic valves using microfluidic logical structures. , 2006, Lab on a chip.

[137]  R. Mathies,et al.  Analysis of carbonaceous biomarkers with the Mars Organic Analyzer microchip capillary electrophoresis system: Aldehydes and ketones , 2010, Electrophoresis.

[138]  Chris McKay,et al.  What Is Life—and How Do We Search for It in Other Worlds? , 2004, PLoS biology.

[139]  D. Ming,et al.  Detection of Perchlorate and the Soluble Chemistry of Martian Soil at the Phoenix Lander Site , 2009, Science.

[140]  P. Willis,et al.  Identification of primary amines in Titan tholins using microchip nonaqueous capillary electrophoresis , 2014 .

[141]  Amanda M Stockton,et al.  Microchip capillary electrophoresis instrumentation for in situ analysis in the search for extraterrestrial life , 2012, Electrophoresis.

[142]  Kenneth H. Nealson,et al.  Astrobiology and the Potential for Life on Europa , 2009 .

[143]  L. Horn,et al.  Infrared observations of the saturnian system from voyager 1. , 1981, Science.