Road to Ruin: Targeting Proteins for Degradation in the Endoplasmic Reticulum

Some nascent proteins that fold within the endoplasmic reticulum (ER) never reach their native state. Misfolded proteins are removed from the folding machinery, dislocated from the ER into the cytosol, and degraded in a series of pathways collectively referred to as ER-associated degradation (ERAD). Distinct ERAD pathways centered on different E3 ubiquitin ligases survey the range of potential substrates. We now know many of the components of the ERAD machinery and pathways used to detect substrates and target them for degradation. Much less is known about the features used to identify terminally misfolded conformations and the broader role of these pathways in regulating protein half-lives.

[1]  A. Steele,et al.  Deep Mantle Cycling of Oceanic Crust: Evidence from Diamonds and Their Mineral Inclusions , 2011, Science.

[2]  J. Olzmann,et al.  Derlin-1 is a rhomboid pseudoprotease required for the dislocation of mutant α-1 antitrypsin from the endoplasmic reticulum , 2011, Nature Structural &Molecular Biology.

[3]  M. Selbach,et al.  Yos9p assists in the degradation of certain nonglycosylated proteins from the endoplasmic reticulum , 2011, Molecular biology of the cell.

[4]  Pedro Carvalho,et al.  A complex of Pdi1p and the mannosidase Htm1p initiates clearance of unfolded glycoproteins from the endoplasmic reticulum. , 2011, Molecular cell.

[5]  M. Freeman,et al.  Rhomboid Family Pseudoproteases Use the ER Quality Control Machinery to Regulate Intercellular Signaling , 2011, Cell.

[6]  I. Wada,et al.  SEL1L Protein Critically Determines the Stability of the HRD1-SEL1L Endoplasmic Reticulum-associated Degradation (ERAD) Complex to Optimize the Degradation Kinetics of ERAD Substrates* , 2011, The Journal of Biological Chemistry.

[7]  Tom A. Rapoport,et al.  Retrotranslocation of a Misfolded Luminal ER Protein by the Ubiquitin-Ligase Hrd1p , 2010, Cell.

[8]  J. Luban,et al.  Cyclosporine A-Sensitive, Cyclophilin B-Dependent Endoplasmic Reticulum-Associated Degradation , 2010, PloS one.

[9]  Thomas Sommer,et al.  Usa1 functions as a scaffold of the HRD-ubiquitin ligase. , 2009, Molecular cell.

[10]  H. Ploegh,et al.  The otubain YOD1 is a deubiquitinating enzyme that associates with p97 to facilitate protein dislocation from the ER. , 2009, Molecular cell.

[11]  R. Hartmann-Petersen,et al.  A luminal flavoprotein in endoplasmic reticulum-associated degradation , 2009, Proceedings of the National Academy of Sciences.

[12]  D. Hebert,et al.  EDEM1 recognition and delivery of misfolded proteins to the SEL1L-containing ERAD complex. , 2009, Molecular cell.

[13]  S. Nishikawa,et al.  Roles of Protein-disulfide Isomerase-mediated Disulfide Bond Formation of Yeast Mnl1p in Endoplasmic Reticulum-associated Degradation , 2009, Journal of Biological Chemistry.

[14]  Daniel Schulz,et al.  Misfolded membrane proteins are specifically recognized by the transmembrane domain of the Hrd1p ubiquitin ligase. , 2009, Molecular cell.

[15]  Koichi Kato,et al.  Human OS-9, a Lectin Required for Glycoprotein Endoplasmic Reticulum-associated Degradation, Recognizes Mannose-trimmed N-Glycans* , 2009, The Journal of Biological Chemistry.

[16]  Thomas Sommer,et al.  Htm1 protein generates the N-glycan signal for glycoprotein degradation in the endoplasmic reticulum , 2009, The Journal of cell biology.

[17]  J. Weissman,et al.  Defining the glycan destruction signal for endoplasmic reticulum-associated degradation. , 2008, Molecular cell.

[18]  E. Fisher,et al.  The many intersecting pathways underlying apolipoprotein B secretion and degradation , 2008, Trends in Endocrinology & Metabolism.

[19]  J. Hoseki,et al.  ERdj5 Is Required as a Disulfide Reductase for Degradation of Misfolded Proteins in the ER , 2008, Science.

[20]  I. Wada,et al.  Human XTP3-B Forms an Endoplasmic Reticulum Quality Control Scaffold with the HRD1-SEL1L Ubiquitin Ligase Complex and BiP* , 2008, Journal of Biological Chemistry.

[21]  M. Molinari,et al.  Segregation and rapid turnover of EDEM1 by an autophagy-like mechanism modulates standard ERAD and folding activities. , 2008, Biochemical and biophysical research communications.

[22]  J. Luban,et al.  A Dual Task for the Xbp1-responsive OS-9 Variants in the Mammalian Endoplasmic Reticulum , 2008, Journal of Biological Chemistry.

[23]  T. Shaler,et al.  OS-9 and GRP94 deliver mutant α1-antitrypsin to the Hrd1–SEL1L ubiquitin ligase complex for ERAD , 2008, Nature Cell Biology.

[24]  J. Brodsky,et al.  Dissecting the ER-Associated Degradation of a Misfolded Polytopic Membrane Protein , 2008, Cell.

[25]  A. Weissman,et al.  Ubiquitin ligases, critical mediators of endoplasmic reticulum-associated degradation. , 2007, Seminars in cell & developmental biology.

[26]  L. Hendershot,et al.  Characterization of an ERAD pathway for nonglycosylated BiP substrates, which require Herp. , 2007, Molecular cell.

[27]  William L. Smith,et al.  The 19-amino Acid Cassette of Cyclooxygenase-2 Mediates Entry of the Protein into the Endoplasmic Reticulum-associated Degradation System* , 2006, Journal of Biological Chemistry.

[28]  Thomas Sommer,et al.  A complex of Yos9p and the HRD ligase integrates endoplasmic reticulum quality control into the degradation machinery , 2006, Nature Cell Biology.

[29]  Tom A. Rapoport,et al.  Distinct Ubiquitin-Ligase Complexes Define Convergent Pathways for the Degradation of ER Proteins , 2006, Cell.

[30]  Jonathan S. Weissman,et al.  A Luminal Surveillance Complex that Selects Misfolded Glycoproteins for ER-Associated Degradation , 2006, Cell.

[31]  H. Ploegh,et al.  Signal peptide peptidase is required for dislocation from the endoplasmic reticulum , 2006, Nature.

[32]  H. Schindelin,et al.  The AAA ATPase p97 links peptide N-glycanase to the endoplasmic reticulum-associated E3 ligase autocrine motility factor receptor. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[33]  T. Sommer,et al.  The Hrd1p ligase complex forms a linchpin between ER‐lumenal substrate selection and Cdc48p recruitment , 2006, The EMBO journal.

[34]  M. Hochstrasser,et al.  Membrane and soluble substrates of the Doa10 ubiquitin ligase are degraded by distinct pathways , 2006, The EMBO journal.

[35]  B. Song,et al.  Gp78, a membrane-anchored ubiquitin ligase, associates with Insig-1 and couples sterol-regulated ubiquitination to degradation of HMG CoA reductase. , 2005, Molecular cell.

[36]  A. Shearer,et al.  Lipid‐mediated, reversible misfolding of a sterol‐sensing domain protein , 2005, The EMBO journal.

[37]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[38]  W. Lencer,et al.  Entry of protein toxins into mammalian cells by crossing the endoplasmic reticulum membrane: co-opting basic mechanisms of endoplasmic reticulum-associated degradation. , 2005, Current topics in microbiology and immunology.

[39]  H. Ploegh,et al.  A membrane protein required for dislocation of misfolded proteins from the ER , 2004, Nature.

[40]  T. Rapoport,et al.  A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol , 2004, Nature.

[41]  A. Helenius,et al.  Roles of N-linked glycans in the endoplasmic reticulum. , 2004, Annual review of biochemistry.

[42]  M. Latterich,et al.  Uncoupling retro‐translocation and degradation in the ER‐associated degradation of a soluble protein , 2004, The EMBO journal.

[43]  H. Ploegh,et al.  A role for N‐glycanase in the cytosolic turnover of glycoproteins , 2003, The EMBO journal.

[44]  Maurizio Molinari,et al.  Role of EDEM in the Release of Misfolded Glycoproteins from the Calnexin Cycle , 2003, Science.

[45]  I. Wada,et al.  EDEM As an Acceptor of Terminally Misfolded Glycoproteins Released from Calnexin , 2003, Science.

[46]  Hiderou Yoshida,et al.  A time-dependent phase shift in the mammalian unfolded protein response. , 2003, Developmental cell.

[47]  M. Hochstrasser,et al.  A conserved ubiquitin ligase of the nuclear envelope/endoplasmic reticulum that functions in both ER-associated and Matalpha2 repressor degradation. , 2001, Genes & development.

[48]  Christine Kim,et al.  Endoplasmic Reticulum Degradation Requires Lumen to Cytosol Signaling , 2000, The Journal of cell biology.

[49]  M. Bogyo,et al.  The Human Cytomegalovirus US11 Gene Product Dislocates MHC Class I Heavy Chains from the Endoplasmic Reticulum to the Cytosol , 1996, Cell.

[50]  H. Ploegh,et al.  Misfolded major histocompatibility complex class I molecules accumulate in an expanded ER-Golgi intermediate compartment , 1995, The Journal of cell biology.

[51]  F. Collins,et al.  Chloride conductance expressed by delta F508 and other mutant CFTRs in Xenopus oocytes. , 1991, Science.