A Continuous ASM Modelling Approach to Pacemaker Sensing

The cardiac pacemaker system, proposed as a problem topic in the Verification Grand Challenge, offers a range of difficulties to address for formal specification, development, and verification technologies. We focus on the sensing problem, the question of whether the heart has produced a spontaneous heartbeat or not. This question is plagued by uncertainties arising from the often unpredictable environment that a real pacemaker finds itself in. We develop a time domain tracking approach to this problem, as a complement to the usual frequency domain approach most frequently used. We develop our case study in the continuous ASM (Abstract State Machine) formalism, which is briefly summarised, through a series of refinement and retrenchment steps, each adding new levels of complexity to the model.

[1]  R Pearse,et al.  Tuberculosis of the Kidney and ureter. , 1920, Canadian Medical Association journal.

[2]  B S Goldman,et al.  The pacemaker challenge. , 1974, Canadian Medical Association journal.

[3]  M. Berry An introduction to Catastrophe Theory , 1981 .

[4]  Lichen Zhang,et al.  A Formal Framework for Aspect-Oriented Specification of Cyber Physical Systems , 2011, ICHIT.

[5]  Dominique Méry,et al.  Technical Report on Formal Development of Two-Electrode Cardiac Pacing System , 2010 .

[6]  Richard Banach,et al.  Composition mechanisms for retrenchment , 2008, J. Log. Algebraic Methods Program..

[7]  Chu-Pak Lau,et al.  Comprar Clinical Cardiac Pacing, Defibrillation and Resynchronization Therapy, 4th Edition Expert Consult Premium Edition - Enhanced Online Features and Print | Kenneth A. Ellenbogen, MD | 9781437716160 | Saunders , 2011 .

[8]  Jim Woodcock,et al.  First Steps in the Verified Software Grand Challenge , 2006, Computer.

[9]  N. Peres,et al.  Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures , 2011, Science.

[10]  Edward A. Lee Cyber-physical Systems -are Computing Foundations Adequate? Position Paper for Nsf Workshop on Cyber-physical Systems: Research Motivation, Techniques and Roadmap , 1998 .

[11]  Egon Börger,et al.  Abstract State Machines. A Method for High-Level System Design and Analysis , 2003 .

[12]  Giovanni Denaro,et al.  ACM Transactions on Software Engineering and Methodology : Volume 22, Nomor 4, 2013 , 2014 .

[13]  Gerhard Schellhorn Verification of ASM Refinements Using Generalized Forward Simulation , 2001, J. Univers. Comput. Sci..

[14]  Alberto L. Sangiovanni-Vincentelli,et al.  Languages and Tools for Hybrid Systems Design , 2006, Found. Trends Electron. Des. Autom..

[15]  Jim Woodcock,et al.  Verified software: a grand challenge , 2006, Computer.

[16]  Thomas A. Henzinger,et al.  Hybrid Automata: An Algorithmic Approach to the Specification and Verification of Hybrid Systems , 1992, Hybrid Systems.

[17]  Edmund M. Clarke,et al.  Statistical Model Checking for Cyber-Physical Systems , 2011, ATVA.

[18]  Dominique Méry,et al.  Pacemaker's Functional Behaviors in Event-B , 2009 .

[19]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[20]  Antoine Girard,et al.  Approximate Simulation Relations for Hybrid Systems , 2008, Discret. Event Dyn. Syst..

[21]  Paulo Tabuada,et al.  Verification and Control of Hybrid Systems , 2009 .

[22]  Jim Woodcock,et al.  The Verification Grand Challenge , 2007, J. Univers. Comput. Sci..

[23]  Richard Banach,et al.  Retrenchment and refinement interworking: the tower theorems , 2015, Math. Struct. Comput. Sci..

[24]  Douglas C. Schmidt,et al.  R&D challenges and solutions for mobile cyber-physical applications and supporting Internet services , 2010, Journal of Internet Services and Applications.

[25]  A. Aubert,et al.  Filter Characteristics of the Atrial Sensing Circuit of a Rate Responsive Pacemaker. To See or Not to See , 1989, Pacing and clinical electrophysiology : PACE.

[26]  F. N. Wilson,et al.  The distribution of the currents of action and of injury displayed by heart muscle and other excitable tissues , 1933 .

[27]  André Platzer,et al.  Logical Analysis of Hybrid Systems - Proving Theorems for Complex Dynamics , 2010 .

[28]  Leonard Barolli,et al.  Special issue on emerging trends in cyber-physical systems , 2011, J. Ambient Intell. Humaniz. Comput..

[29]  Roland X. Stroobandt,et al.  Cardiac Pacemakers and Resynchronization Step-by-Step: An Illustrated Guide, Second Edition , 2010 .

[30]  Marcel Vinícius Medeiros Oliveira,et al.  Formal Development of a Cardiac Pacemaker: From Specification to Code , 2010, SBMF.

[31]  Janos Sztipanovits,et al.  Model Integration and Cyber Physical Systems: A Semantics Perspective , 2011, FM.

[32]  Mark A. Wood,et al.  Cardiac Pacing and ICDs , 1996 .

[33]  Egon Börger,et al.  The ASM Refinement Method , 2003, Formal Aspects of Computing.

[34]  Carolyn L. Talcott,et al.  Toward Distributed Declarative Control of Networked Cyber-Physical Systems , 2010, UIC.

[35]  Nora Goldschlager,et al.  Cardiac pacing for the clinician , 2008 .

[36]  F. N. Wilson,et al.  THE DISTRIBUTION OF THE ACTION CURRENTS PRODUCED BY HEART MUSCLE AND OTHER EXCITABLE TISSUES IMMERSED IN EXTENSIVE CONDUCTING MEDIA , 1933, The Journal of general physiology.

[37]  Thomas A. Henzinger,et al.  Automatic Rectangular Refinement of Affine Hybrid Systems , 2005, FORMATS.

[38]  Edward A. Lee,et al.  Introduction to Embedded Systems - A Cyber-Physical Systems Approach , 2013 .

[39]  M Kleinert,et al.  Spectral Properties of Atrial and Ventricular Endocardial Signals , 1979, Pacing and clinical electrophysiology : PACE.

[40]  Dominique Méry,et al.  Functional Behavior of a Cardiac Pacing System , 2010 .

[41]  Gerhard Schellhorn,et al.  ASM refinement and generalizations of forward simulation in data refinement: a comparison , 2005, Theor. Comput. Sci..

[42]  S Furman,et al.  Cardiac pacing and pacemaker. III. Sensing the cardiac electrogram. , 1977, American heart journal.

[43]  Angelo Auricchio,et al.  Clinical Cardiac Pacing, Defibrillation and Resynchronization Therapy , 2007 .

[44]  S Furman,et al.  A Comparison of Unipolar and Bipolar Electrograms for Cardiac Pacemaker Sensing , 1977, Circulation.

[45]  C. Israel,et al.  Atrial pacing and sensing characteristics in heart failure patients undergoing cardiac resynchronization therapy. , 2005, Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology.

[46]  Jennifer M. Davoren Epsilon-Tubes and Generalized Skorokhod Metrics for Hybrid Paths Spaces , 2009, HSCC.

[47]  Hugo Daniel Macedo,et al.  Incremental Development of a Distributed Real-Time Model of a Cardiac Pacing System Using VDM , 2008, FM.

[48]  Marcel Vinícius Medeiros Oliveira,et al.  Formal Specification of a Cardiac Pacing System , 2009, FM.

[49]  Robert Gilmore,et al.  Catastrophe Theory for Scientists and Engineers , 1981 .

[50]  Paulo Tabuada,et al.  Verification and Control of Hybrid Systems - A Symbolic Approach , 2009 .

[51]  Thomas Stauner,et al.  Discrete-Time Refinement of Hybrid Automata , 2002, HSCC.

[52]  Thomas A. Henzinger,et al.  The theory of hybrid automata , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.

[53]  He Jifeng,et al.  From CSP to hybrid systems , 1994 .

[54]  Martin Fränzle,et al.  Crossing the Bridge between Similar Games , 2011, FORMATS.

[55]  Peter Timothy Saunders,et al.  An introduction to Catastrophe Theory : Exercises , 1980 .

[56]  Susan Stepney,et al.  Engineering and theoretical underpinnings of retrenchment , 2007, Sci. Comput. Program..

[57]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[58]  Edward A. Lee Cyber Physical Systems: Design Challenges , 2008, 2008 11th IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing (ISORC).