Photopatternable nano-composite (SU-8/ZnO) thin films for piezo-electric applications

Photo-curable nanocomposite material was formulated by embedding ZnO nanoparticles into a SU-8 matrix and studied for its piezoelectric properties for low cost fabrication of self-powered nanodevices. The piezoelectric coefficient of ZnO nanoparticles was observed to be ranging between 15 and 23 pm/V, which is the highest reported. These experimental studies support the recent theoretical predictions where the piezoelectric coefficients in ZnO nanoparticles were found to be higher compared to the thin films because of the surface relaxation induced volume reductions in the nanometer scale. The photo-curable property of these polymer composite films is exploited to demonstrate fabrication of a micro-cantilever test structure.

[1]  V Seena,et al.  Polymer nanocomposite nanomechanical cantilever sensors: material characterization, device development and application in explosive vapour detection , 2011, Nanotechnology.

[2]  Anders Hagfeldt,et al.  Nanostructured ZnO electrodes for photovoltaic applications , 1999 .

[3]  Angus I. Kingon,et al.  Piezoelectric measurements with atomic force microscopy , 1998 .

[4]  W. H. Teh,et al.  Effect of low numerical-aperture femtosecond two-photon absorption on (SU-8) resist for ultrahigh-aspect-ratio microstereolithography , 2005 .

[5]  J. W. Brown,et al.  Suspension of nanoparticles in SU-8: Processing and characterization of nanocomposite polymers , 2008, Microelectron. J..

[6]  Zhong Lin Wang,et al.  Piezoelectric and semiconducting coupled power generating process of a single ZnO belt/wire. A technology for harvesting electricity from the environment. , 2006, Nano letters.

[7]  T. Krah,et al.  Nanoindentation testing of SU-8 photoresist mechanical properties , 2008 .

[8]  A. Safari Development of piezoelectric composites for transducers , 1994 .

[9]  D. Fang,et al.  A unified model for piezocomposites with non-piezoelectric matrix and piezoelectric ellipsoidal inclusions , 1999 .

[10]  Gregory M. Odegard,et al.  Constitutive Modeling of Piezoelectric Polymer Composites , 2004 .

[11]  Jianfeng Chen,et al.  Preparation and characterization of PS‐PMMA/ZnO nanocomposite films with novel properties of high transparency and UV‐shielding capacity , 2010 .

[12]  Zhong Lin Wang,et al.  Piezoelectric Characterization of Individual Zinc Oxide Nanobelt Probed by Piezoresponse Force Microscope , 2004 .

[13]  E. Fukada,et al.  Piezoelectric properties in the composite systems of polymers and PZT ceramics , 1979 .

[14]  Saibal Roy,et al.  Self-powered autonomous wireless sensor node using vibration energy harvesting , 2008 .

[15]  Horacio D Espinosa,et al.  Giant piezoelectric size effects in zinc oxide and gallium nitride nanowires. A first principles investigation. , 2011, Nano letters.

[16]  R. Kar-Gupta,et al.  Electromechanical response of piezoelectric composites : Effects of geometric connectivity and grain size , 2008 .

[17]  L. E. Cross,et al.  Connectivity and piezoelectric-pyroelectric composites , 1978 .

[18]  Michael Wraback,et al.  Structural, optical, and surface acoustic wave properties of epitaxial ZnO films grown on (0112) sapphire by metalorganic chemical vapor deposition , 1999 .

[19]  G. Pharr Measurement of mechanical properties by ultra-low load indentation , 1998 .

[20]  Song-Yul Choe,et al.  Modeling and analysis of a bimorph piezoelectric cantilever beam for voltage generation , 2007 .

[21]  Xiaodong Li,et al.  Young’s modulus of ZnO nanobelts measured using atomic force microscopy and nanoindentation techniques , 2006, Nanotechnology.

[22]  P. Renaud,et al.  Conductive SU8 Photoresist for Microfabrication , 2005 .

[23]  S. Lanceros‐Méndez,et al.  Effect of filler size and concentration on the structure and properties of poly(vinylidene fluoride)/BaTiO3 nanocomposites , 2012, Journal of Materials Science.

[24]  S. Beeby,et al.  Energy harvesting vibration sources for microsystems applications , 2006 .

[25]  D. Polla,et al.  PROCESSING AND CHARACTERIZATION OF PIEZOELECTRIC MATERIALS AND INTEGRATION INTO MICROELECTROMECHANICAL SYSTEMS , 1998 .

[26]  Xiaotang Hu,et al.  Piezoelectric microelectromechanical resonant sensors for chemical and biological detection. , 2012, Lab on a chip.

[27]  P. Ajayan,et al.  Flexible piezoelectric ZnO-paper nanocomposite strain sensor. , 2010, Small.

[28]  Tahir Cagin,et al.  Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect , 2008 .

[29]  I. Krupa,et al.  Analysis of correlation between percolation concentration and elongation at break in filled electroconductive epoxy-based adhesives , 2003 .

[30]  V. Seena,et al.  A Novel Photoplastic Piezoelectric Nanocomposite for MEMS Applications , 2012, Journal of Microelectromechanical Systems.

[31]  N. D. de Rooij,et al.  Evaluation of static measurement in piezoelectric cantilever sensors using a charge integration technique for chemical and biological detection , 2010 .

[32]  Harold S. Park,et al.  Surface piezoelectricity: Size effects in nanostructures and the emergence of piezoelectricity in non-piezoelectric materials , 2011 .

[33]  N. Jayasundere,et al.  PIEZOELECTRIC CONSTANT FOR BINARY PIEZOELECTRIC 0-3 CONNECTIVITY COMPOSITES AND THE EFFECT OF MIXED CONNECTIVITY , 1994 .

[34]  C. Hierold,et al.  A photopatternable superparamagnetic nanocomposite: Material characterization and fabrication of microstructures , 2011 .

[35]  T. Thundat,et al.  Local piezoelectric response of ZnO nanoparticles embedded in a photosensitive polymer , 2012 .

[36]  J. Hsu,et al.  Correlated piezoelectric and electrical properties in individual ZnO nanorods. , 2008, Nano letters.

[37]  Z. Fan,et al.  Zinc oxide nanostructures: synthesis and properties. , 2005, Journal of nanoscience and nanotechnology.

[38]  Y. S. Zhang,et al.  Size dependence of Young's modulus in ZnO nanowires. , 2006, Physical review letters.

[39]  Di Chen,et al.  A MEMS-based piezoelectric power generator array for vibration energy harvesting , 2008, Microelectron. J..

[40]  Minbaek Lee,et al.  Flexible Nanocomposite Generator Made of BaTiO3 Nanoparticles and Graphitic Carbons , 2012, Advanced materials.

[41]  S. Jesse,et al.  A decade of piezoresponse force microscopy: progress, challenges, and opportunities , 2006, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.