Gyrokinetic particle simulation of beta-induced Alfvén eigenmode

The beta-induced Alfven eigenmode (BAE) in toroidal plasmas is studied using global gyrokinetic particle simulations. The BAE real frequency and damping rate measured in the initial perturbation simulation and in the antenna excitation simulation agree well with each other. The real frequency is slightly higher than the ideal magnetohydrodynamic (MHD) accumulation point frequency due to the kinetic effects of thermal ions. Simulations with energetic particle density gradient show exponential growth of BAE with a growth rate sensitive to the energetic particle temperature and density. The nonperturbative contributions by energetic particles modify the mode structure and reduce the frequency relative to the MHD theory. The finite Larmor radius effects of energetic particles reduce the BAE growth rate. Benchmarks between gyrokinetic particle simulation and hybrid MHD-gyrokinetic simulation show good agreement in BAE real frequency and mode structure.

[1]  D. N. Borba,et al.  Modeling the excitation of global Alfvén modes by an external antenna in the Joint European Torus (JET) , 1995 .

[2]  L. L. Lao,et al.  A numerical study of the high‐n shear Alfvén spectrum gap and the high‐n gap mode , 1992 .

[3]  Liu Chen,et al.  THEORY OF KINETIC BALLOONING MODES EXCITED BY ENERGETIC PARTICLES IN TOKAMAKS , 1993 .

[4]  M. S. Chance,et al.  High- n ideal and resistive shear Alfvén waves in tokamaks , 1985 .

[5]  Campbell,et al.  Direct measurement of the damping of toroidicity-induced Alfvén eigenmodes. , 1995, Physical review letters.

[6]  X. Garbet,et al.  Electromagnetic effects on geodesic acoustic and beta-induced Alfvén eigenmodes , 2010 .

[7]  X. Garbet,et al.  Excitation of beta Alfvén eigenmodes in Tore-Supra , 2009 .

[8]  John M. Dawson,et al.  Geodesic Acoustic Waves in Hydromagnetic Systems , 1968 .

[9]  Turnbull,et al.  Observation of beta-induced Alfvén eigenmodes in the DIII-D tokamak. , 1993, Physical review letters.

[10]  L. L. Lao,et al.  Global Alfvén modes: Theory and experiment* , 1993 .

[11]  Zhihong Lin,et al.  Trapped electron damping of geodesic acoustic mode , 2010 .

[12]  Y. Nishimura,et al.  Electromagnetic global gyrokinetic simulation of shear Alfven wave dynamics in tokamak plasmas , 2007 .

[13]  Liu Chen,et al.  Kinetic theory of low-frequency Alfvén modes in tokamaks , 1996 .

[14]  Y. Nishimura Excitation of low-n toroidicity induced Alfvén eigenmodes by energetic particles in global gyrokinetic tokamak plasmas , 2009 .

[15]  X. Garbet,et al.  Variational derivation of the dispersion relation of kinetic coherent modes in the acoustic frequency range in tokamaks , 2008 .

[16]  P. Buratti,et al.  Excitation of beta-induced Alfvén eigenmodes in the presence of a magnetic island , 2007 .

[17]  Lin,et al.  Method for solving the gyrokinetic Poisson equation in general geometry. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[18]  V. Marchenko,et al.  Excitation of the beta-induced Alfvén eigenmodes by a magnetic island , 2009 .

[19]  W. Heidbrink,et al.  What is the “beta-induced Alfvén eigenmode?” , 1999 .

[20]  P. Buratti,et al.  Observation of high-frequency waves during strong tearing mode activity in FTU plasmas without fast ions , 2005 .

[21]  High-frequency fishbones at JET: theoretical interpretation of experimental observations , 2009 .

[22]  A. Bondeson,et al.  Inertia and ion Landau damping of low‐frequency magnetohydrodynamical modes in tokamaks , 1996 .

[23]  L. Chen,et al.  The importance of parallel nonlinearity in the self-interaction of geodesic acoustic mode , 2009 .

[24]  W. Lee,et al.  Gyrokinetic Particle Simulation Model , 1987 .

[25]  Liu Chen,et al.  Gyrokinetic‐magnetohydrodynamic hybrid simulation of the transition from toroidal Alfvén eigenmodes to kinetic ballooning modes in tokamaks , 1996 .

[26]  Chio Cheng,et al.  Fast particle destabilization of toroidal Alfven eigenmodes , 1995 .

[27]  Ihor Holod,et al.  Electromagnetic formulation of global gyrokinetic particle simulation in toroidal geometry , 2009 .

[28]  Liu,et al.  Investigation of Beta-Induced Alfvén Eigenmode during Strong Tearing Mode Activity in the HL-2A Tokamak , 2010 .

[29]  S. Briguglio,et al.  Hybrid magnetohydrodynamic-particle simulation of linear and nonlinear evolution of Alfven modes in tokamaks , 1998 .

[30]  I. Holod,et al.  Gyrokinetic particle simulations of reversed shear Alfvén eigenmode excited by antenna and fast ions , 2010 .

[31]  W. Heidbrink,et al.  Energetic particle effects as an explanation for the low frequencies of Alfvén modes in the DIII-D tokamak , 2002 .

[32]  L. Chen,et al.  Theory and simulation of discrete kinetic beta induced Alfvén eigenmode in tokamak plasmas , 2010 .

[33]  S. Sharapov,et al.  Plasma pressure effect on Alfvén cascade eigenmodes , 2005 .

[34]  Alain J. Brizard,et al.  Foundations of Nonlinear Gyrokinetic Theory , 2007 .

[35]  G. Vlad,et al.  Linear and nonlinear evolution of alpha-particle driven gap modes , 1995 .

[36]  J. Manickam,et al.  High‐frequency core localized modes in neutral beam heated plasmas on TFTR , 1996 .

[37]  Ihor Holod,et al.  Iop Publishing Plasma Physics and Controlled Fusion Global Gyrokinetic Particle Simulations with Kinetic Electrons , 2022 .

[38]  J. Contributors,et al.  Active excitation and damping rate measurement of intermediate-n toroidal Alfvén eigenmodes in JET, C-Mod and MAST plasmas , 2010 .

[39]  T. Hahm,et al.  Turbulent transport reduction by zonal flows: massively parallel simulations , 1998, Science.

[40]  Zhihong Lin,et al.  A fluid-kinetic hybrid electron model for electromagnetic simulations , 2001 .

[41]  N. Hicks,et al.  Kinetic Alfvén eigenmodes at ASDEX Upgrade , 2009 .