Hydrogen-Bonded Networks: Molecular Recognition of Cyclic Alcohols in Enantiopure Alleno-Acetylenic Cage Receptors.

Enantiopure (P)4 - and (M)4 -alleno-acetylenic cage (AAC) receptors form circular fourfold hydrogen-bonding networks in their closed cage conformation. Theoretical studies reveal a preferential clockwise (cw) orientation of the H-bonding array for (P)4 -configured and counterclockwise (ccw) for (M)4 -configured receptors (ΔEcw-ccw =-2.6 to -3.1 kcal mol-1 ). Solution and solid-state studies show how the H-bonding network of the receptor is expanded upon encapsulation of alcohol-containing guests. Topologies reminiscent of those found in isolated water clusters are observed: circular fourfold & docking, pentagonal, linear fivefold, and hexagonal boat-shaped. Expansion of the H-bonding network together with optimal space occupancy yields very high ligand affinities (ΔG293 K =-9.0 kcal mol-1 for endo-tropine). The H-bonding network in the complexes also contributes substantially to the enantioselective complexation of chiral diols, such as (R,R)- and (S,S)-trans-cyclohexane-1,2-diol.

[1]  Leo A. Joyce,et al.  Optical Analysis of Reaction Yield and Enantiomeric Excess: A New Paradigm Ready for Prime Time. , 2018, Journal of the American Chemical Society.

[2]  G. Klebe,et al.  Sugar Acetonides are a Superior Motif for Addressing the Large, Solvent-Exposed Ribose-33 Pocket of tRNA-Guanine Transglycosylase. , 2018, Chemistry.

[3]  S. Matsumoto,et al.  Spontaneous Helix Formation of " meta"-Ethynylphenol Oligomers by Sequential Intramolecular Hydrogen Bonding inside the Cavities. , 2018, The Journal of organic chemistry.

[4]  N. Trapp,et al.  Complexation and Structure Elucidation of the Axial Conformers of Mono- and (±)-trans-1,2-Disubstituted Cyclohexanes by Enantiopure Alleno-Acetylenic Cage Receptors. , 2018, Chimia.

[5]  F. Diederich,et al.  Molecular Recognition with Resorcin[4]arene Cavitands: Switching, Halogen-Bonded Capsules, and Enantioselective Complexation. , 2018, Journal of the American Chemical Society.

[6]  M. Reiher,et al.  Statistical Analysis of Semiclassical Dispersion Corrections. , 2018, Journal of chemical theory and computation.

[7]  F. Diederich,et al.  Dispersion and Halogen-Bonding Interactions: Binding of the Axial Conformers of Monohalo- and (±)-trans-1,2-Dihalocyclohexanes in Enantiopure Alleno-Acetylenic Cages. , 2017, Journal of the American Chemical Society.

[8]  G. Klebe,et al.  Paying the Price of Desolvation in Solvent-Exposed Protein Pockets: Impact of Distal Solubilizing Groups on Affinity and Binding Thermodynamics in a Series of Thermolysin Inhibitors. , 2017, Journal of medicinal chemistry.

[9]  Gerhard Klebe,et al.  Rational Design of Thermodynamic and Kinetic Binding Profiles by Optimizing Surface Water Networks Coating Protein-Bound Ligands. , 2016, Journal of medicinal chemistry.

[10]  Nils Trapp,et al.  Alleno‐acetylenische Käfigrezeptoren (AAKs) – chiroptische Schaltung und enantioselektive Komplexierung von trans‐1,2‐Dimethylcyclohexan in einer diaxialen Konformation , 2016 .

[11]  F. Diederich,et al.  Alleno-Acetylenic Cage (AAC) Receptors: Chiroptical Switching and Enantioselective Complexation of trans-1,2-Dimethylcyclohexane in a Diaxial Conformation. , 2016, Angewandte Chemie.

[12]  Qi Zhang,et al.  Advantages of Catalysis in Self-Assembled Molecular Capsules. , 2016, Chemistry.

[13]  H. Schneider,et al.  Experimental Binding Energies in Supramolecular Complexes. , 2016, Chemical reviews.

[14]  Johannes Kästner,et al.  Der Tunneleffekt von Atomen in der Chemie , 2016 .

[15]  J. Kästner,et al.  Atom Tunneling in Chemistry. , 2016, Angewandte Chemie.

[16]  Brooks H. Pate,et al.  Concerted hydrogen-bond breaking by quantum tunneling in the water hexamer prism , 2016, Science.

[17]  F. Diederich,et al.  Molekulare Erkennung in chemischen und biologischen Systemen , 2015 .

[18]  F. Diederich,et al.  Molecular recognition in chemical and biological systems. , 2015, Angewandte Chemie.

[19]  Nils Trapp,et al.  Chiroptische Detektion achiraler Gäste ohne Chromophor durch enantiomerenreine alleno‐acetylenische helicale Käfige , 2014 .

[20]  F. Diederich,et al.  Chiroptical detection of nonchromophoric, achiral guests by enantiopure alleno-acetylenic helicages. , 2014, Angewandte Chemie.

[21]  N. Berova,et al.  Application of electronic circular dichroism in the study of supramolecular systems. , 2014, Chemical Society reviews.

[22]  G. Whitesides,et al.  Is it the shape of the cavity, or the shape of the water in the cavity? , 2014 .

[23]  M. Oguni,et al.  Effect of p-tert-butyl group substitution on the quantum tunneling rate in quadruple proton rearrangement of calix[4]arene. , 2013, The journal of physical chemistry. B.

[24]  Qi Zhang,et al.  Hexameric resorcinarene capsule is a Brønsted acid: investigation and application to synthesis and catalysis. , 2013, Journal of the American Chemical Society.

[25]  G. Whitesides,et al.  Water networks contribute to enthalpy/entropy compensation in protein-ligand binding. , 2013, Journal of the American Chemical Society.

[26]  S. Xantheas,et al.  Optimal geometries and harmonic vibrational frequencies of the global minima of water clusters (H2O)n, n = 2-6, and several hexamer local minima at the CCSD(T) level of theory. , 2013, The Journal of chemical physics.

[27]  Sergey Kazachenko,et al.  Methanol clusters (CH3OH)n: putative global minimum-energy structures from model potentials and dispersion-corrected density functional theory. , 2013, The Journal of chemical physics.

[28]  G. Klebe,et al.  Zerlegung des hydrophoben Effekts auf molekularer Ebene: Die Rolle von Wasser, Enthalpie und Entropie bei der Ligandenbindung an Thermolysin , 2013 .

[29]  Gerhard Klebe,et al.  Dissecting the hydrophobic effect on the molecular level: the role of water, enthalpy, and entropy in ligand binding to thermolysin. , 2013, Angewandte Chemie.

[30]  Wilfred F. van Gunsteren,et al.  Free enthalpies of replacing water molecules in protein binding pockets , 2012, Journal of Computer-Aided Molecular Design.

[31]  M. Oguni,et al.  Quantum tunneling in the quadruple proton rearrangement on a hydroxyl hydrogen bond ring in calix[4]arene. , 2012, The journal of physical chemistry. B.

[32]  D. Wales,et al.  Pinning Down the Water Hexamer , 2012, Science.

[33]  Brooks H. Pate,et al.  Structures of Cage, Prism, and Book Isomers of Water Hexamer from Broadband Rotational Spectroscopy , 2012, Science.

[34]  F. Diederich,et al.  Cycloalkane and alicyclic heterocycle complexation by new switchable resorcin[4]arene-based container molecules: NMR and ITC binding studies. , 2011, Chemistry.

[35]  Albeiro Restrepo,et al.  Structural studies of the water pentamer , 2011 .

[36]  M. Suhm,et al.  The benefits of alternation and alkylation: large amplitude hydrogen bond librational modes of alcohol trimers and tetramers. , 2010, Physical chemistry chemical physics : PCCP.

[37]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[38]  Albeiro Restrepo,et al.  Structural characterization of the (methanol)4 potential energy surface. , 2009, The journal of physical chemistry. A.

[39]  Sung-Hou Kim,et al.  Water polygons in high‐resolution protein crystal structures , 2009, Protein science : a publication of the Protein Society.

[40]  M. Pecul,et al.  A Chiral “Frozen” Hydrogen Bonding in C4‐Symmetric Inherently Chiral Resorcin[4]arenes: NMR, X‐ray, Circular Dichroism, and Theoretical Study , 2008 .

[41]  Adam R. Urbach,et al.  Carbonic anhydrase as a model for biophysical and physical-organic studies of proteins and protein-ligand binding. , 2008, Chemical reviews.

[42]  C. Hadad,et al.  Structural studies of the water tetramer , 2008 .

[43]  F. Diederich,et al.  Fluorine in Pharmaceuticals: Looking Beyond Intuition , 2007, Science.

[44]  A. Szumna Cyclochiral conformers of resorcin[4]arenes stabilized by hydrogen bonds. , 2007, Organic & biomolecular chemistry.

[45]  F. Weigend,et al.  Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. , 2005, Physical chemistry chemical physics : PCCP.

[46]  Gerhard Hummer,et al.  Water clusters in nonpolar cavities. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[47]  C. Nuckolls,et al.  New Molecular Vessels: Synthesis and Chiroselective Recognition , 2000 .

[48]  R. Caciuffo,et al.  Coordinated proton tunnelling in a cyclic network of four hydrogen bonds in the solid state , 1999, Nature.

[49]  J. Rebek,et al.  The 55 % Solution: A Formula for Molecular Recognition in the Liquid State , 1998 .

[50]  J. Atwood,et al.  A chiral spherical molecular assembly held together by 60 hydrogen bonds , 1997, Nature.

[51]  J. Rebek,et al.  Self-Assembling Capsules. , 1997, Chemical reviews.

[52]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[53]  Gerhard Klebe,et al.  What Can We Learn from Molecular Recognition in Protein–Ligand Complexes for the Design of New Drugs? , 1996 .

[54]  Hans Böhm,et al.  Was läßt sich aus der molekularen Erkennung in Protein‐Ligand‐Komplexen für das Design neuer Wirkstoffe lernen? , 1996 .

[55]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[56]  R. Saykally,et al.  Water Clusters , 1996, Science.

[57]  R. Saykally,et al.  Water Clusters , 1996, Science.

[58]  J. Dunitz The entropic cost of bound water in crystals and biomolecules. , 1994, Science.

[59]  M. Teeter,et al.  Water structure of a hydrophobic protein at atomic resolution: Pentagon rings of water molecules in crystals of crambin. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[60]  Wolfram Saenger,et al.  Cyclodextrin Inclusion Compounds in Research and Industry , 1980 .

[61]  W. Saenger Cyclodextrin‐Einschlußverbindungen in Forschung und Industrie , 1980 .

[62]  W. Saenger Circular hydrogen bonds , 1979, Nature.