Low-temperature solubility of copper in iron: experimental study using thermoelectric power, small angle X-ray scattering and tomographic atom probe

Measuring the solubility limit of copper in iron at temperature lower than 700°C is problematic because copper diffusion is too slow in this temperature range. To overcome this difficulty, fine precipitation of copper is studied. The solubility limit of copper is measured after complete precipitation using two complementary techniques: thermoelectric power and small angle X-ray scattering. Values obtained are confirmed by tomographic atom probe and give results much higher than what is usually extrapolated from high-temperature experiments.

[1]  Y. Bréchet,et al.  Thermal ageing of an Fe‒Cu alloy: Microstructural evolution and precipitation hardening , 1996 .

[2]  J. Merlin,et al.  Precipitation effects on thermopower in Al-Cu alloys , 1984 .

[3]  Peter Binkele,et al.  Atomistic computer simulation of the formation of Cu-precipitates in steels , 2002 .

[4]  M. Perez Gibbs-Thomson effects in phase transformations , 2005 .

[5]  P. Guyot,et al.  Coherent precipitation effect on thermo-power of AlCu alloys , 1988 .

[6]  C. Gorter,et al.  Bemerkungen über thermokraft und widerstand , 1935 .

[7]  G. Smith,et al.  Transmission electron microscope investigations of the structure of copper precipitates in thermally-aged Fe—Cu and Fe—Cu—Ni , 1991 .

[8]  Michael K Miller,et al.  Atom Probe Field Ion Microscopy , 1996 .

[9]  K. Roberts,et al.  A fluorescence EXAFS study of the structure of copper-rich precipitates in Fe–Cu and Fe–Cu–Ni alloys , 1990 .

[10]  I. Lifshitz,et al.  The kinetics of precipitation from supersaturated solid solutions , 1961 .

[11]  D. Greig,et al.  Thermoelectric Power of Metals , 1976 .

[12]  C. Watanabe,et al.  Coarsening of Spherical Cu Particles in an α-Fe Matrix , 2004 .

[13]  D. Llewellyn Copper in steels , 1995 .

[14]  P. Pareige,et al.  Direct observation of copper precipitation in a neutron irradiated FeCu alloy by 3D atomic tomography , 1995 .

[15]  Frédéric Soisson,et al.  Kinetic pathways from embedded-atom-method potentials: Influence of the activation barriers , 2002 .

[16]  A. Serra,et al.  The evolution of copper precipitates in binary FeCu alloys during ageing and irradiation , 1995 .

[17]  A. Deschamps,et al.  Comparison of Precipitation Kinetics and Strengthening in an Fe-0.8%Cu Alloy and a 0.8%Cu-containing Low-carbon Steel , 2003 .

[18]  P. Donnadieu,et al.  Caractérisation et modélisation de la précipitation du carbone de niobium et du cuivre dans les aciers bas carbone , 2004 .

[19]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[20]  O. Glatter,et al.  19 – Small-Angle X-ray Scattering , 1973 .

[21]  D. Blavette,et al.  An atom probe for three-dimensional tomography , 1993, Nature.

[22]  D. Dunne,et al.  Age Hardening in a Cu-bearing High Strength Low Alloy Steel , 1996 .

[23]  T. Russell,et al.  Intercalibration of small-angle X-ray and neutron scattering data , 1988 .

[24]  M. Feller-Kniepmeier,et al.  The diffusion and solubility of copper in iron , 1977 .

[25]  Matthias Militzer,et al.  Precipitation Kinetics and Strengthening of a Fe-0.8wt%Cu Alloy , 2001 .

[26]  Tae-Ho Lee,et al.  Effects of Copper Addition on Mechanical Properties of 0.15C-1.5Mn-1.5Si TRIP-aided Multiphase Cold-rolled Steel Sheets , 2002 .