Plasma-deposited Ge nanoisland films on Si: is Stranski–Krastanow fragmentation unavoidable?

The formation of Ge quantum dot arrays by deposition from a low-temperature plasma environment is investigated by kinetic Monte Carlo numerical simulation. It is demonstrated that balancing of the Ge influx from the plasma against surface diffusion provides an effective control of the surface processes and can result in the formation of very small densely packed quantum dots. In the supply-controlled mode, a continuous layer is formed which is then followed by the usual Stranski-Krastanow fragmentation with a nanocluster size of 10 nm. In the diffusion-controlled mode, with the oversupply relative to the surface diffusion rate, nanoclusters with a characteristic size of 3 nm are formed. Higher temperatures change the mode to supply controlled and thus encourage formation of the continuous layer that then fragments into an array of large size. The use of a high rate of deposition, easily accessible using plasma techniques, changes the mode to diffusion controlled and thus encourages formation of a dense array of small nanoislands.

[1]  M. Keidar,et al.  On the model of Teflon ablation in an ablation-controlled discharge , 2001 .

[2]  Miran Mozetič,et al.  Behaviour of oxygen atoms near the surface of nanostructured Nb2O5 , 2007 .

[3]  Michael Keidar,et al.  Ion current distribution on a substrate during nanostructure formation , 2004 .

[4]  Igor Levchenko,et al.  Plasma-assisted self-organized growth of uniform carbon nanocone arrays , 2007 .

[5]  Sasan Fathpour,et al.  High-speed quantum dot lasers , 2005 .

[6]  Kostya Ostrikov,et al.  Plasma-aided nanofabrication: where is the cutting edge? , 2007 .

[7]  T. Gemming,et al.  On the diffusion-controlled growth of multiwalled carbon nanotubes , 2005 .

[8]  Michael Keidar,et al.  Microscopic ion fluxes in plasma-aided nanofabrication of ordered carbon nanotip structures , 2005 .

[9]  Igor Levchenko,et al.  Uniformity of postprocessing of dense nanotube arrays by neutral and ion fluxes , 2006 .

[10]  Z. Huang,et al.  Formation of nanostructures by the activated Stranski-Krastanow transition method. , 2004, Physical review letters.

[11]  M. Diani,et al.  Original Ge-induced phenomena on various SiC(0 0 0 1) reconstructions , 2007 .

[12]  G. Bauer,et al.  Lateral arrangement of self-assembled quantum dots in anSiGe/Si supertattice , 1999 .

[13]  M. Kushner,et al.  Continuous processing of polymers in repetitively pulsed atmospheric pressure discharges with moving surfaces and gas flow , 2007 .

[14]  Igor Levchenko,et al.  Growth kinetics of carbon nanowall-like structures in low-temperature plasmas , 2007 .

[15]  M. Kushner Modelling of microdischarge devices: plasma and gas dynamics , 2005 .

[16]  N. Motta,et al.  Formation of the wetting layer in Ge/Si(111) studied by STM and XAFS , 2000 .

[17]  Michael Keidar,et al.  2D expansion of the low-density interelectrode vacuum arc plasma jet in an axial magnetic field , 1996 .

[18]  Igor Levchenko,et al.  Control of core-shell structure and elemental composition of binary quantum dots , 2007 .

[19]  Toma Stoica,et al.  Size distribution and electroluminescence of self-assembled Ge dots , 2000 .

[20]  Michael Keidar,et al.  On the conditions of carbon nanotube growth in the arc discharge , 2004 .

[21]  Michael Keidar,et al.  Investigation of a steady-state cylindrical magnetron discharge for plasma immersion treatment , 2003 .

[22]  M. Keidar,et al.  Macroparticle distribution in a quarter-torus plasma duct of a filtered vacuum arc deposition system , 1997 .

[23]  Igor Levchenko,et al.  Nanostructures of various dimensionalities from plasma and neutral fluxes , 2007 .

[24]  J. Barroso,et al.  Numerical simulation of magnetic field enhanced plasma immersion ion implantation , 2007 .

[25]  J. Tersoff,et al.  Coarsening of Self-Assembled Ge Quantum Dots on Si(001) , 1998 .

[26]  Tsung-Shine Ko,et al.  Low‐Temperature Growth of Germanium Quantum Dots on Silicon Oxide by Inductively Coupled Plasma Chemical Vapor Deposition , 2004 .

[27]  M. Mozetič,et al.  The influence of substrate material on bacteria sterilization in an oxygen plasma glow discharge , 2006 .

[28]  E. Janzén,et al.  Effect of vapor composition on polytype homogeneity of epitaxial silicon carbide , 1996 .

[29]  Michael Keidar,et al.  Factors affecting synthesis of single wall carbon nanotubes in arc discharge , 2007 .

[30]  H. Elsayed-Ali,et al.  Growth of Ge Quantum Dots on Si(100)-(2×1) by Pulsed Laser Deposition , 2006 .

[31]  A. Yakimov,et al.  Conductance oscillations in Ge/Si heterostructures containing quantum dots , 1994 .

[32]  Michael Keidar,et al.  Stable plasma configurations in a cylindrical magnetron discharge , 2004 .

[33]  J. Gonzalo,et al.  Ion concentrations in plasmas produced from 193 nm excimer laser irradiation of LiNbO3 in vacuum and gas atmospheres , 2003 .

[34]  Kostya Ostrikov,et al.  Colloquium: Reactive plasmas as a versatile nanofabrication tool , 2005 .

[35]  M. Hanke,et al.  Lateral correlation of SiGe Stranski-Krastanow islands on silicon as probed by high resolution x-ray diffraction , 2004 .

[36]  Kang L. Wang,et al.  Temperature effect on the formation of uniform self-assembled Ge dots , 2003 .

[37]  F. Yubero,et al.  Supported Ag–TiO2 core–shell nanofibres formed at low temperature by plasma deposition , 2006, Nanotechnology.

[38]  Dieter Bimberg Quantum dots for lasers, amplifiers and computing , 2005 .

[39]  Michael Keidar,et al.  Deterministic nanoassembly: Neutral or plasma route? , 2006 .

[40]  M Keidar,et al.  Modeling of the anodic arc discharge and conditions for single-wall carbon nanotube growth. , 2006, Journal of nanoscience and nanotechnology.

[41]  L. Kuipers,et al.  Diffusion controlled growth of metallic nanoclusters at selected surface sites , 1996 .

[42]  V. Shenoy,et al.  Three-dimensional simulations of self-assembly of hut-shaped Si–Ge quantum dots , 2004 .

[43]  F. Schäffler,et al.  Self‐assembled Si and SiGe nanostructures: New growth concepts and structural analysis , 2006 .

[44]  M. Ichikawa,et al.  Instability of two-dimensional layers in the Stranski-Krastanov growth mode of Ge on Si(111) , 1998 .

[45]  Kostya Ostrikov,et al.  Synthesis of functional nanoassemblies in reactive plasmas , 2006 .

[46]  J. D. Long,et al.  Plasma-assisted self-sharpening of platelet-structured single-crystalline carbon nanocones , 2007 .

[47]  Theodore I. Kamins,et al.  Deposition of three-dimensional Ge islands on Si(001) by chemical vapor deposition at atmospheric and reduced pressures , 1997 .