Self-Adapting Evolutionary Parameters: Encoding Aspects for Combinatorial Optimization Problems

Evolutionary algorithms are powerful tools in search and optimization tasks with several applications in complex engineering problems. However, setting all associated parameters is not an easy task and the adaptation seems to be an interesting alternative. This paper aims to analyze the effect of self-adaptation of some evolutionary parameters of genetic algorithms (GAs). Here we intend to propose a flexible GA-based algorithm where only few parameters have to be defined by the user. Benchmark problems of combinatorial optimization were used to test the performance of the proposed approach.

[1]  Dirk Thierens,et al.  Mixing in Genetic Algorithms , 1993, ICGA.

[2]  Lawrence. Davis,et al.  Handbook Of Genetic Algorithms , 1990 .

[3]  Shigeyoshi Tsutsui,et al.  Advances in evolutionary computing: theory and applications , 2003 .

[4]  J. David Schaffer,et al.  An Adaptive Crossover Distribution Mechanism for Genetic Algorithms , 1987, ICGA.

[5]  W. Spears,et al.  On the Virtues of Parameterized Uniform Crossover , 1995 .

[6]  Larry J. Eshelman,et al.  Biases in the Crossover Landscape , 1989, ICGA.

[7]  Thomas Bäck,et al.  The zero/one multiple knapsack problem and genetic algorithms , 1994, SAC '94.

[8]  William M. Spears,et al.  Crossover or Mutation? , 1992, FOGA.

[9]  Kenneth A. De Jong,et al.  An Analysis of the Interacting Roles of Population Size and Crossover in Genetic Algorithms , 1990, PPSN.

[10]  A. E. Eiben,et al.  Introduction to Evolutionary Computing , 2003, Natural Computing Series.

[11]  Kenneth A. De Jong,et al.  A formal analysis of the role of multi-point crossover in genetic algorithms , 1992, Annals of Mathematics and Artificial Intelligence.

[12]  John J. Grefenstette,et al.  Proceedings of the Second International Conference on Genetic Algorithms on Genetic algorithms and their application , 1987 .

[13]  Jim Smith,et al.  Self adaptation of mutation rates in a steady state genetic algorithm , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[14]  John J. Grefenstette,et al.  Optimization of Control Parameters for Genetic Algorithms , 1986, IEEE Transactions on Systems, Man, and Cybernetics.

[15]  J. David Schaffer,et al.  Proceedings of the third international conference on Genetic algorithms , 1989 .

[16]  Peter J. Angeline,et al.  Adaptive and Self-adaptive Evolutionary Computations , 1995 .

[17]  Terence C. Fogarty,et al.  Varying the Probability of Mutation in the Genetic Algorithm , 1989, ICGA.

[18]  Thomas Bäck,et al.  Evolutionary algorithms in theory and practice - evolution strategies, evolutionary programming, genetic algorithms , 1996 .

[19]  Zbigniew Michalewicz,et al.  Adaptation in evolutionary computation: a survey , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[20]  Lashon B. Booker,et al.  Proceedings of the fourth international conference on Genetic algorithms , 1991 .

[21]  Kenneth Alan De Jong,et al.  An analysis of the behavior of a class of genetic adaptive systems. , 1975 .

[22]  Zbigniew Michalewicz,et al.  Parameter Control in Evolutionary Algorithms , 2007, Parameter Setting in Evolutionary Algorithms.

[23]  Zbigniew W. Ras,et al.  Methodologies for Intelligent Systems , 1991, Lecture Notes in Computer Science.

[24]  Héctor Pomares,et al.  Statistical analysis of the main parameters involved in the design of a genetic algorithm , 2002, IEEE Trans. Syst. Man Cybern. Part C.

[25]  William M. Spears,et al.  Adapting Crossover in Evolutionary Algorithms , 1995, Evolutionary Programming.

[26]  Jim Smith,et al.  Operator and parameter adaptation in genetic algorithms , 1997, Soft Comput..

[27]  Larry J. Eshelman,et al.  On Crossover as an Evolutionarily Viable Strategy , 1991, ICGA.

[28]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[29]  A. E. Eiben,et al.  Multiparent recombination in evolutionary computing , 2002 .

[30]  Steven Orla Kimbrough,et al.  Exploring A Two-market Genetic Algorithm , 2002, GECCO.

[31]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[32]  William M. Spears,et al.  A Study of Crossover Operators in Genetic Programming , 1991, ISMIS.

[33]  Stephanie Forrest,et al.  Proceedings of the 5th International Conference on Genetic Algorithms , 1993 .

[34]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[35]  Shigeyoshi Tsutsui,et al.  Multi-parent Recombination in Genetic Algorithms , 1997 .

[36]  Thomas Bck,et al.  Self-adaptation in genetic algorithms , 1991 .

[37]  D. Thierens Adaptive mutation rate control schemes in genetic algorithms , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[38]  William H. Press,et al.  Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .

[39]  Dan Boneh,et al.  On genetic algorithms , 1995, COLT '95.

[40]  Marimuthu Palaniswami,et al.  Computational Intelligence: A Dynamic System Perspective , 1995 .

[41]  Gilbert Syswerda,et al.  Uniform Crossover in Genetic Algorithms , 1989, ICGA.

[42]  Christine L. Mumford,et al.  Comparing representations and recombination operators for the multi-objective 0/1 knapsack problem , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[43]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .