A mixed hybrid Mortar method for solving flow in discrete fracture networks

We consider flow in discrete fracture networks made of 2D domains in intersection and solved with a mixed hybrid finite element method (MHFEM). The discretization within each fracture is performed in two steps: first, borders and intersections are discretized, second, based on these discretizations, a 2D mesh is built. Independent meshing process within each subdomain is of interest for practical use since it makes it easier to refine the chosen subdomains and to perform parallel computation. This article shows how MHFEM is well adapted for integrating a Mortar method to enforce the continuity of the fluxes and heads at the non-matching grids. Some numerical simulations are given to show the efficiency of the method in the case of a preferential orientation of the fractures where a comparison with the 2D solution is possible.

[1]  Hussein Hoteit Simulation d'écoulements et de transports de polluants en milieu poreux : application à la modélisation de la sûreté des dépôts de déchets radioactifs , 2002 .

[2]  B. Philippe,et al.  Numerical Reliability for Mixed Methods Applied to Flow Problems in Porous Media , 2002 .

[3]  Marc Garbey,et al.  Asymptotic and numerical methods for partial differential equations with critical parameters , 1993 .

[4]  I. Yotov,et al.  Mixed Finite Element Methods on Non-Matching Multiblock Grids , 1996 .

[5]  Todd Arbogast,et al.  Mixed Finite Element Methods on Nonmatching Multiblock Grids , 2000, SIAM J. Numer. Anal..

[6]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[7]  James F. Blowey,et al.  Theory and Numerics of Differential Equations , 2001 .

[8]  Martin Vohralík Méthodes numériques pour les équations elliptiques et paraboliques non linéaires : application à des problèmes d'écoulement en milieux poreux et fracturés , 2004 .

[9]  Anthony T. Patera,et al.  Domain Decomposition by the Mortar Element Method , 1993 .

[10]  D. Arnold,et al.  Mixed and nonconforming finite element methods : implementation, postprocessing and error estimates , 1985 .

[11]  Jean-Raynald de Dreuzy,et al.  Flow Simulation in Three-Dimensional Discrete Fracture Networks , 2009, SIAM J. Sci. Comput..

[12]  Vincent Martin,et al.  Modeling Fractures and Barriers as Interfaces for Flow in Porous Media , 2005, SIAM J. Sci. Comput..

[13]  C. Bernardi,et al.  A New Nonconforming Approach to Domain Decomposition : The Mortar Element Method , 1994 .

[14]  Yvon Maday,et al.  Spectral, Spectral Element and Mortar Element Methods , 2001 .