A Massively Parallel Reporter Assay of 3' UTR Sequences Identifies In Vivo Rules for mRNA Degradation.

[1]  A. Schier,et al.  A Massively Parallel Reporter Assay of 3' UTR Sequences Identifies In Vivo Rules for mRNA Degradation. , 2018, Molecular cell.

[2]  Jan M Skotheim,et al.  Zygotic Genome Activation in Vertebrates. , 2017, Developmental cell.

[3]  Sharon R Grossman,et al.  Systematic dissection of genomic features determining transcription factor binding and enhancer function , 2017, Proceedings of the National Academy of Sciences.

[4]  Charles E. Vejnar,et al.  RESA identifies mRNA regulatory sequences with high resolution , 2016, Nature Methods.

[5]  Chuan He,et al.  m6A-dependent maternal mRNA clearance facilitates zebrafish maternal-to-zygotic transition , 2016, Nature.

[6]  Antonio J Giraldez,et al.  Codon identity regulates mRNA stability and translation efficiency during the maternal‐to‐zygotic transition , 2016, The EMBO journal.

[7]  David Gresham,et al.  Multiple Transcript Properties Related to Translation Affect mRNA Degradation Rates in Saccharomyces cerevisiae , 2016, G3: Genes, Genomes, Genetics.

[8]  D. Bartel,et al.  mRNA poly(A)-tail changes specified by deadenylation broadly reshape translation in Drosophila oocytes and early embryos , 2016, eLife.

[9]  V. Kim,et al.  mTAIL-seq reveals dynamic poly(A) tail regulation in oocyte-to-embryo development , 2016, Genes & development.

[10]  Yuichiro Mishima,et al.  Codon Usage and 3' UTR Length Determine Maternal mRNA Stability in Zebrafish. , 2016, Molecular cell.

[11]  Georg Seelig,et al.  Learning the Sequence Determinants of Alternative Splicing from Millions of Random Sequences , 2015, Cell.

[12]  Julien Gagneur,et al.  Determinants of RNA metabolism in the Schizosaccharomyces pombe genome , 2015, bioRxiv.

[13]  Z. Yakhini,et al.  Systematic Dissection of the Sequence Determinants of Gene 3’ End Mediated Expression Control , 2015, PLoS genetics.

[14]  N. Friedman,et al.  High-Resolution Sequencing and Modeling Identifies Distinct Dynamic RNA Regulatory Strategies , 2014, Cell.

[15]  F. Piano,et al.  Global characterization of the oocyte‐to‐embryo transition in Caenorhabditis elegans uncovers a novel mRNA clearance mechanism , 2014, The EMBO journal.

[16]  Saeed Tavazoie,et al.  Systematic identification of regulatory elements in conserved 3' UTRs of human transcripts. , 2014, Cell reports.

[17]  Michael T. McManus,et al.  Massively parallel functional annotation of 3' untranslated regions , 2014, Nature Biotechnology.

[18]  Kevin Struhl,et al.  Global Analysis of mRNA Isoform Half-Lives Reveals Stabilizing and Destabilizing Elements in Yeast , 2014, Cell.

[19]  D. Bartel,et al.  Poly(A)-tail profiling reveals an embryonic switch in translational control , 2014, Nature.

[20]  Gioele La Manno,et al.  Quantitative single-cell RNA-seq with unique molecular identifiers , 2013, Nature Methods.

[21]  Miler T. Lee,et al.  Nanog, Pou5f1 and SoxB1 activate zygotic gene expression during the maternal-to-zygotic transition , 2013, Nature.

[22]  Brendan J. Frey,et al.  A compendium of RNA-binding motifs for decoding gene regulation , 2013, Nature.

[23]  M. Simonelig,et al.  Control of maternal mRNA stability in germ cells and early embryos. , 2013, Biochimica et biophysica acta.

[24]  T. Mikkelsen,et al.  Systematic dissection of regulatory motifs in 2000 predicted human enhancers using a massively parallel reporter assay. , 2013, Genome research.

[25]  Łukasz M. Boryń,et al.  Genome-Wide Quantitative Enhancer Activity Maps Identified by STARR-seq , 2013, Science.

[26]  Felice-Alessio Bava,et al.  Translational control by changes in poly(A) tail length: recycling mRNAs , 2012, Nature Structural &Molecular Biology.

[27]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[28]  Michael F. Lin,et al.  Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis. , 2012, Genome research.

[29]  Z. Gong,et al.  Zebrafish mRNA sequencing deciphers novelties in transcriptome dynamics during maternal to zygotic transition. , 2011, Genome research.

[30]  R. Tibshirani,et al.  Regression shrinkage and selection via the lasso: a retrospective , 2011 .

[31]  A. Shyu,et al.  Mechanisms of deadenylation‐dependent decay , 2011, Wiley interdisciplinary reviews. RNA.

[32]  J. Kere,et al.  The zebrafish transcriptome during early development , 2011, BMC Developmental Biology.

[33]  Nicholas T. Ingolia,et al.  Mammalian microRNAs predominantly act to decrease target mRNA levels , 2010, Nature.

[34]  Scott B. Dewell,et al.  Transcriptome-wide Identification of RNA-Binding Protein and MicroRNA Target Sites by PAR-CLIP , 2010, Cell.

[35]  Eran Segal,et al.  Computational prediction of RNA structural motifs involved in posttranscriptional regulatory processes , 2008, Proceedings of the National Academy of Sciences.

[36]  H. Meijer,et al.  Translational control by cytoplasmic polyadenylation in Xenopus oocytes , 2008, Biochimica et biophysica acta.

[37]  R. Guigó,et al.  A Combinatorial Code for CPE-Mediated Translational Control , 2008, Cell.

[38]  Reuven Agami,et al.  RNA-Binding Protein Dnd1 Inhibits MicroRNA Access to Target mRNA , 2007, Cell.

[39]  Gabriele Varani,et al.  RNA is rarely at a loss for companions; as soon as RNA , 2008 .

[40]  Timothy R Hughes,et al.  SMAUG is a major regulator of maternal mRNA destabilization in Drosophila and its translation is activated by the PAN GU kinase. , 2007, Developmental cell.

[41]  P. Thampi,et al.  Musashi regulates the temporal order of mRNA translation during Xenopus oocyte maturation , 2006, The EMBO journal.

[42]  Anton J. Enright,et al.  Zebrafish MiR-430 Promotes Deadenylation and Clearance of Maternal mRNAs , 2006, Science.

[43]  D. Stumpo,et al.  The CCCH tandem zinc-finger protein Zfp36l2 is crucial for female fertility and early embryonic development , 2004, Development.

[44]  Chiara Gamberi,et al.  An anterior function for the Drosophila posterior determinant Pumilio. , 2002, Development.

[45]  J. Steitz,et al.  AUUUA Sequences Direct mRNA Deadenylation Uncoupled from Decay during Xenopus Early Development , 1998, Molecular and Cellular Biology.

[46]  C. Kimmel,et al.  The zebrafish midblastula transition. , 1993, Development.

[47]  G. Struhl,et al.  RNA regulatory elements mediate control of Drosophila body pattern by the posterior morphogen nanos , 1991, Cell.

[48]  L. Gold,et al.  Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. , 1990, Science.

[49]  L. Hyman,et al.  Translational inactivation of ribosomal protein mRNAs during Xenopus oocyte maturation. , 1988, Genes & development.