Errors-in-Variables Models in Parameter Bounding

When all observed variables of a model are affected by noise, parameter estimation is known as the errors-in-variables problem. While parameter bounding methods and algorithms have been extensively developed in the case of exactly known regressor variables, little attention has been paid to the bounded errors-in-variables problem. This chapter gives a formal proof of a previous result on the description of the feasible parameter region for models linear in the parameters in the presence of bounded errors in all variables. Topological features of the feasible parameter region, such as convexity and connectedness, are also discussed. Finally, approximate parameter uncertainty intervals are derived for ARMAX models when all the observed variables are affected by bounded noise. For an example involving extensive simulations, central estimates obtained by means of the bounded errors-in-variables approach and least squares estimates are computed and compared.

[1]  Antonio Vicino,et al.  Optimal estimation theory for dynamic systems with set membership uncertainty: An overview , 1991, Autom..

[2]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[3]  J. Norton,et al.  Bounding Approaches to System Identification , 1996 .

[4]  Sylviane Gentil,et al.  Recursive membership estimation for output-error models , 1990 .

[5]  J. P. Norton,et al.  Identification and application of bounded-parameter models , 1985, Autom..

[6]  E. Walter,et al.  Estimation of parameter bounds from bounded-error data: a survey , 1990 .

[7]  V. Broman,et al.  A compact algorithm for the intersection and approximation of N -dimensional polytopes , 1990 .

[8]  Torsten Söderström,et al.  Identification of stochastic linear systems in presence of input noise , 1981, Autom..

[9]  Vito Cerone,et al.  Parameter bounds for ARMAX models from records with bounded errors in variables , 1993 .

[10]  J. Norton Recursive computation of inner bounds for the parameters of linear models , 1989 .

[11]  J. Norton Identification of parameter bounds for ARMAX models from records with bounded noise , 1987 .

[12]  Vito Cerone,et al.  Feasible parameter set for linear models with bounded errors in all variables , 1993, Autom..

[13]  E. Walter,et al.  Exact recursive polyhedral description of the feasible parameter set for bounded-error models , 1989 .

[14]  Y. A. Merkuryev,et al.  Identification of objects with unknown bounded disturbances , 1989 .

[15]  Ramon E. Moore Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.

[16]  B. Barmish,et al.  The propagation of parametric uncertainty via polytopes , 1979 .

[17]  Gustavo Belforte,et al.  Identification, structure selection and validation of uncertain models with set-membership error description , 1990 .

[18]  M. Milanese,et al.  Estimation theory and uncertainty intervals evaluation in presence of unknown but bounded errors: Linear families of models and estimators , 1982 .

[19]  J. P. Norton,et al.  Fast and robust algorithm to compute exact polytope parameter bounds , 1990 .

[20]  E. Walter,et al.  Minimal volume ellipsoids , 1994 .

[21]  Y. F. Huang,et al.  On the value of information in system identification - Bounded noise case , 1982, Autom..

[22]  Gustavo Belforte,et al.  Parameter estimation algorithms for a set-membership description of uncertainty , 1990, Autom..

[23]  Sylviane Gentil,et al.  Reformulation of parameter identification with unknown-but-bounded errors , 1988 .

[24]  M. Milanese,et al.  Optimal inner bounds of feasible parameter set in linear estimation with bounded noise , 1991 .

[25]  R. Tempo,et al.  Optimality of central and projection algorithms for bounded uncertainty , 1986 .