FDTD analysis of the optical black hole

An optical black hole is studied using a parallel radially dependent finite-difference time-domain (FDTD) simulation technique. The device requires non-dispersive metamaterial structures and is capable of broadband operation, based on transformation optics. Excellent absorption is demonstrated for different angles of wave incidence and illumination excitation types. In addition, a practical device, which is made to be matched to free space, is proposed, and the relevant physics is explored. Finally, peculiar phase distributions of the electromagnetic waves are observed inside the radially dependent permittivity material of the devices.

[1]  David R. Smith,et al.  Broadband Ground-Plane Cloak , 2009, Science.

[2]  Y. Hao,et al.  Manipulating the loss in electromagnetic cloaks for perfect wave absorption. , 2008, Optics express.

[3]  M. Lipson,et al.  Silicon nanostructure cloak operating at optical frequencies , 2009, 0904.3508.

[4]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[5]  J. Pendry,et al.  Hiding under the carpet: a new strategy for cloaking. , 2008, Physical review letters.

[6]  J. Pendry,et al.  Three-Dimensional Invisibility Cloak at Optical Wavelengths , 2010, Science.

[7]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[8]  J. Lee,et al.  Direct visualization of optical frequency invisibility cloak based on silicon nanorod array. , 2009, Optics express.

[9]  W. Cai,et al.  Plasmonics for extreme light concentration and manipulation. , 2010, Nature materials.

[10]  Vincent Fusco,et al.  A parallel implementation of the finite difference time‐domain algorithm , 1995 .

[11]  D. Genov,et al.  Mimicking celestial mechanics in metamaterials , 2009 .

[12]  U. Leonhardt Optical Conformal Mapping , 2006, Science.

[13]  Y. Hao,et al.  A Radially-Dependent Dispersive Finite-Difference Time-Domain Method for the Evaluation of Electromagnetic Cloaks , 2008, IEEE Transactions on Antennas and Propagation.

[14]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[15]  Willie J Padilla,et al.  Perfect metamaterial absorber. , 2008, Physical review letters.

[16]  G. Bartal,et al.  An optical cloak made of dielectrics. , 2009, Nature materials.

[17]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[18]  A. Kildishev,et al.  Optical black hole: Broadband omnidirectional light absorber , 2009 .

[19]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[20]  Dispersive cylindrical cloaks under nonmonochromatic illumination. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  Tie Jun Cui,et al.  Compact-sized and broadband carpet cloak and free-space cloak. , 2009, Optics express.

[22]  Jack Ng,et al.  Metamaterial frequency-selective superabsorber. , 2009, Optics letters.

[23]  Y. Hao,et al.  Ground-plane quasicloaking for free space , 2009, 0902.1692.