Rewriting with Frobenius

Symmetric monoidal categories have become ubiquitous as a formal environment for the analysis of compound systems in a compositional, resource-sensitive manner using the graphical syntax of string diagrams. Recently, reasoning with string diagrams has been implemented concretely via double-pushout (DPO) hypergraph rewriting. The hypergraph representation has the twin advantages of being convenient for mechanisation and of completely absorbing the structural laws of symmetric monoidal categories, leaving just the domain-specific equations explicit in the rewriting system. In many applications across different disciplines (linguistics, concurrency, quantum computation, control theory,...) the structural component appears to be richer than just the symmetric monoidal structure, as it includes one or more Frobenius algebras. In this work we develop a DPO rewriting formalism which is able to absorb multiple Frobenius structures, thus sensibly simplifying diagrammatic reasoning in the aforementioned applications. As a proof of concept, we use our formalism to describe an algorithm which computes the reduced form of a diagram of the theory of interacting bialgebras using a simple rewrite strategy.

[1]  Dan R. Ghica,et al.  Diagrammatic Semantics for Digital Circuits , 2017, CSL.

[2]  David I. Spivak,et al.  Nesting of dynamic systems and mode-dependent networks , 2015, 1502.07380.

[3]  Simon Perdrix,et al.  A Complete Axiomatisation of the ZX-Calculus for Clifford+T Quantum Mechanics , 2017, LICS.

[4]  A. Carboni,et al.  Cartesian bicategories I , 1987 .

[5]  Filippo Bonchi,et al.  A Categorical Semantics of Signal Flow Graphs , 2014, CONCUR.

[6]  Fabio Zanasi,et al.  A Universal Construction for (Co)Relations , 2017, CALCO.

[7]  Roberto Bruni,et al.  Some algebraic laws for spans , 2001, Electron. Notes Theor. Comput. Sci..

[8]  John C. Baez,et al.  Categories in Control , 2014, 1405.6881.

[9]  Roberto Bruni,et al.  A basic algebra of stateless connectors , 2006, Theor. Comput. Sci..

[10]  Fabio Zanasi,et al.  Interacting Hopf Algebras: the theory of linear systems , 2018, ArXiv.

[11]  P. Selinger A Survey of Graphical Languages for Monoidal Categories , 2009, 0908.3347.

[12]  Filippo Bonchi,et al.  Interacting Hopf Algebras , 2014, ArXiv.

[13]  Aleks Kissinger,et al.  Quantomatic: A proof assistant for diagrammatic reasoning , 2015, CADE.

[14]  Reiko Heckel,et al.  Algebraic Approaches to Graph Transformation - Part I: Basic Concepts and Double Pushout Approach , 1997, Handbook of Graph Grammars.

[15]  Bob Coecke,et al.  Interacting Quantum Observables , 2008, ICALP.

[16]  Fabio Zanasi,et al.  The Algebra of Partial Equivalence Relations , 2016, MFPS.

[17]  Nicoletta Sabadini,et al.  Span(Graph): A Categorial Algebra of Transition Systems , 1997, AMAST.

[18]  Pawel Sobocinski,et al.  Adhesive and quasiadhesive categories , 2005, RAIRO Theor. Informatics Appl..

[19]  Stephen Clark,et al.  The Frobenius anatomy of word meanings I: subject and object relative pronouns , 2013, J. Log. Comput..

[20]  Aleks Kissinger,et al.  Picturing Quantum Processes: A First Course in Quantum Theory and Diagrammatic Reasoning , 2017 .

[21]  Filippo Bonchi,et al.  Full Abstraction for Signal Flow Graphs , 2015, POPL.

[22]  Brendan Fong,et al.  The algebra of open and interconnected systems , 2016, 1609.05382.

[23]  Fabrizio Genovese,et al.  Custom Hypergraph Categories via Generalized Relations , 2017, CALCO.

[24]  Paolo Rapisarda,et al.  A categorical approach to open and interconnected dynamical systems , 2015, 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[25]  Fabio Gadducci,et al.  Confluence of Graph Rewriting with Interfaces , 2017, ESOP.

[26]  Fabio Gadducci,et al.  Rewriting modulo symmetric monoidal structure , 2016, 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[27]  Filippo Bonchi,et al.  Interacting Bialgebras Are Frobenius , 2014, FoSSaCS.

[28]  Filippo Bonchi,et al.  The Calculus of Signal Flow Diagrams I: Linear relations on streams , 2017, Inf. Comput..

[29]  Fabio Gadducci,et al.  An inductive view of graph transformation , 1997, WADT.

[30]  Fabio Zanasi Rewriting in Free Hypegraph Categories , 2017, GaM@ETAPS.

[31]  Dusko Pavlovic,et al.  Monoidal computer I: Basic computability by string diagrams , 2012, Inf. Comput..

[32]  Quanlong Wang,et al.  A universal completion of the ZX-calculus , 2017, ArXiv.