A simple design of an artificial electromagnetic black hole

We conduct a rigorous study on the properties of an artificial electromagnetic black hole for transverse magnetic modes. A multilayered structure of such a black hole is then proposed as a reduced variety for easy experimental implementations. An actual design of composite materials based on the effective medium theory is given with only five kinds of real isotropic materials. The finite element method confirms the functionality of such a simple design.

[1]  A. Kildishev,et al.  Cylinder light concentrator and absorber: theoretical description. , 2010, Optics express.

[2]  T. Cui,et al.  An omnidirectional electromagnetic absorber made of metamaterials , 2010 .

[3]  P. Sheng,et al.  Transformation optics and metamaterials. , 2010, Nature materials.

[4]  Huanyang Chen,et al.  Transformation optics that mimics the system outside a Schwarzschild black hole. , 2009, Optics express.

[5]  Miao Li,et al.  Casimir Energy, Holographic Dark Energy and Electromagnetic Metamaterial Mimicking de Sitter , 2009, 0910.3375.

[6]  T. Cui,et al.  Experimental realization of a broadband bend structure using gradient index metamaterials. , 2009, Optics express.

[7]  S. Tretyakov,et al.  Broadband electromagnetic cloaking of long cylindrical objects. , 2009, Physical review letters.

[8]  Shiyang Liu,et al.  Effective-medium theory for anisotropic magnetic metamaterials , 2009 .

[9]  D. Genov,et al.  Mimicking celestial mechanics in metamaterials , 2009 .

[10]  A. Kildishev,et al.  Optical black hole: Broadband omnidirectional light absorber , 2009 .

[11]  G. Bartal,et al.  An optical cloak made of dielectrics. , 2009, Nature materials.

[12]  T. Tyc,et al.  An omnidirectional retroreflector based on the transmutation of dielectric singularities. , 2009, Nature materials.

[13]  Huanyang Chen,et al.  Design and experimental realization of a broadband transformation media field rotator at microwave frequencies. , 2009, Physical review letters.

[14]  M. Lipson,et al.  Silicon nanostructure cloak operating at optical frequencies , 2009, 0904.3508.

[15]  A. Kildishev,et al.  Anisotropic metamaterials emulated by tapered waveguides: application to optical cloaking. , 2009, Physical review letters.

[16]  David R. Smith,et al.  Broadband Ground-Plane Cloak , 2009, Science.

[17]  J. Vivanco,et al.  ‡ To whom correspondence should be addressed: , 2022 .

[18]  E. Narimanov,et al.  Semiclassical theory of the Hyperlens , 2007, 2007 Conference on Lasers and Electro-Optics (CLEO).

[19]  D Cassagne,et al.  Homogenization of negative-index composite metamaterials: a two-step approach. , 2007, Physical review letters.

[20]  Ulf Leonhardt,et al.  General relativity in electrical engineering , 2006, SPIE Optics + Optoelectronics.

[21]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[22]  Jensen Li,et al.  Effective medium theory for magnetodielectric composites : Beyond the long-wavelength limit , 2006 .

[23]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[24]  U. Leonhardt Optical Conformal Mapping , 2006, Science.

[25]  K. Ho,et al.  Diamagnetic response of metallic photonic crystals at infrared and visible frequencies. , 2006, Physical review letters.

[26]  René Dändliker,et al.  Scattering of an off-axis Gaussian beam by a dielectric cylinder compared with a rigorous electromagnetic approach , 1995 .

[27]  D. Pozar Microwave Engineering , 1990 .

[28]  P. Barber Absorption and scattering of light by small particles , 1984 .