A fuzzy clustering algorithm for finding arbitrary shaped clusters

Until now, many algorithms have been introduced for finding arbitrary shaped clusters, but none of these algorithms is able to identify all sorts of cluster shapes and structures that are encountered in practice. Furthermore, the time complexity of the existing algorithms is usually high and applying them on large datasets is time-consuming. In this paper, a novel fast clustering algorithm is proposed. This algorithm distinguishes clusters of different shapes using a two- stage clustering approach. In the first stage, the data points are grouped into a relatively large number of fuzzy ellipsoidal sub-clusters. Then, connections between sub-clusters are established according to the Bhattacharya distances and final clusters are formed from the resulted graph of sub-clusters in the second stage. Experimental results show the ability of the proposed algorithm for finding clusters of different shapes.

[1]  Donald Gustafson,et al.  Fuzzy clustering with a fuzzy covariance matrix , 1978, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.

[2]  Yizong Cheng,et al.  Mean Shift, Mode Seeking, and Clustering , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Matthew King,et al.  Density based fuzzy C , 2006, Eur. J. Oper. Res..

[4]  Ana L. N. Fred,et al.  Combining multiple clusterings using evidence accumulation , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Sudipto Guha,et al.  CURE: an efficient clustering algorithm for large databases , 1998, SIGMOD '98.

[6]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[7]  Ana L. N. Fred,et al.  Data clustering using evidence accumulation , 2002, Object recognition supported by user interaction for service robots.

[8]  Chris H. Q. Ding,et al.  Dynamic cluster formation using level set methods , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Carla E. Brodley,et al.  Random Projection for High Dimensional Data Clustering: A Cluster Ensemble Approach , 2003, ICML.

[10]  Ben J. A. Kröse,et al.  A k-segments algorithm for finding principal curves , 2002, Pattern Recognit. Lett..

[11]  Joachim M. Buhmann,et al.  Path-Based Clustering for Grouping of Smooth Curves and Texture Segmentation , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Kenneth G. Manton,et al.  Fuzzy Cluster Analysis , 2005 .

[13]  J. C. Peters,et al.  Fuzzy Cluster Analysis : A New Method to Predict Future Cardiac Events in Patients With Positive Stress Tests , 1998 .

[14]  Achi Brandt,et al.  Fast multiscale clustering and manifold identification , 2006, Pattern Recognit..

[15]  Rong Jin,et al.  Generalized Maximum Margin Clustering and Unsupervised Kernel Learning , 2006, NIPS.

[16]  Sandrine Dudoit,et al.  Bagging to Improve the Accuracy of A Clustering Procedure , 2003, Bioinform..

[17]  Chris H. Q. Ding,et al.  A min-max cut algorithm for graph partitioning and data clustering , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[18]  Narendra Ahuja,et al.  Location- and Density-Based Hierarchical Clustering Using Similarity Analysis , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Ming Gu,et al.  Spectral min-max cut for graph partitioning and data clustering , 2001 .

[20]  Anil K. Jain,et al.  Clustering ensembles: models of consensus and weak partitions , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Inderjit S. Dhillon,et al.  Kernel k-means: spectral clustering and normalized cuts , 2004, KDD.

[22]  Joydeep Ghosh,et al.  Cluster Ensembles --- A Knowledge Reuse Framework for Combining Multiple Partitions , 2002, J. Mach. Learn. Res..

[23]  Yuntao Qian,et al.  Clustering combination method , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[24]  Eytan Domany,et al.  Data Clustering Using a Model Granular Magnet , 1997, Neural Computation.

[25]  B. Ripley,et al.  Pattern Recognition , 1968, Nature.

[26]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[27]  Eric W. Tyree,et al.  The use of linked line segments for cluster representation and data reduction , 1999, Pattern Recognit. Lett..

[28]  Nello Cristianini,et al.  Spectral Kernel Methods for Clustering , 2001, NIPS.

[29]  R. Suganya,et al.  Data Mining Concepts and Techniques , 2010 .

[30]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[31]  Vipin Kumar,et al.  Chameleon: Hierarchical Clustering Using Dynamic Modeling , 1999, Computer.

[32]  George Karypis,et al.  C HAMELEON : A Hierarchical Clustering Algorithm Using Dynamic Modeling , 1999 .