Matching island topologies to problem structure in parallel evolutionary algorithms

In the context of Parallel Evolutionary Algorithms, it has been shown that different population structures induce different search performances. Nevertheless, no work has shown a clear cut evidence that there is a correlation between the solver’s population structure and the problem’s network structure. In this work, we verify this correlation performing a clear and systematic analysis of a large set of population structures (based on the well known β-graphs and NK-landscape problems. Furthermore, we go beyond our findings in these idealised experiments by analysing the performance of variable-topology EAs on a dynamic real-world problem, the Multi-Skills Call Centre.

[1]  Enrique Alba,et al.  Parallelism and evolutionary algorithms , 2002, IEEE Trans. Evol. Comput..

[2]  Natalio Krasnogor,et al.  A Study on the use of ``self-generation'' in memetic algorithms , 2004, Natural Computing.

[3]  Comparison of Metaheuristics for Workforce Distribution in Multi-skill Call Centres , 2010, IJCCI.

[4]  A. E. Eiben,et al.  A method for parameter calibration and relevance estimation in evolutionary algorithms , 2006, GECCO '06.

[5]  Natalio Krasnogor,et al.  Automated probe microscopy via evolutionary optimization at the atomic scale , 2011 .

[6]  Adrien Goëffon,et al.  Optimal One-Max Strategy with Dynamic Island Models , 2011, 2011 IEEE 23rd International Conference on Tools with Artificial Intelligence.

[7]  Erick Cantú-Paz Migration Policies and Takeover Times in Genetic Algorithms , 1999, GECCO.

[8]  J. Kennedy,et al.  Population structure and particle swarm performance , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[9]  Ruhul A. Sarker,et al.  The Self-Organization of Interaction Networks for Nature-Inspired Optimization , 2008, IEEE Transactions on Evolutionary Computation.

[10]  Kwok Yip Szeto,et al.  Quasi-parallel genetic algorithms with different communication topologies , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[11]  Eric Goodman,et al.  Investigations in meta-GAs: panaceas or pipe dreams? , 2005, GECCO '05.

[12]  Erick Cantú-Paz,et al.  Topologies, Migration Rates, and Multi-Population Parallel Genetic Algorithms , 1999, GECCO.

[13]  A. E. Eiben,et al.  Efficient relevance estimation and value calibration of evolutionary algorithm parameters , 2007, 2007 IEEE Congress on Evolutionary Computation.

[14]  Jonathan M. Garibaldi,et al.  CHAC, A MOACO algorithm for computation of bi-criteria military unit path in the battlefield: Presentation and first results , 2009 .

[15]  Matthew A. Addicoat,et al.  Using Meta-Genetic Algorithms to tune parameters of Genetic Algorithms to find lowest energy Molecular Conformers , 2010, ALIFE.

[16]  Guanrong Chen,et al.  Complex networks: small-world, scale-free and beyond , 2003 .

[17]  Sébastien Vérel,et al.  Local Optima Networks of NK Landscapes With Neutrality , 2011, IEEE Transactions on Evolutionary Computation.

[18]  M. Weigt,et al.  On the properties of small-world network models , 1999, cond-mat/9903411.

[19]  Marco Tomassini,et al.  Effects of Scale-Free and Small-World Topologies on Binary Coded Self-adaptive CEA , 2006, EvoCOP.

[20]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[21]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[22]  Peter Brucker,et al.  Scheduling Algorithms , 1995 .

[23]  Alden H. Wright,et al.  Genetic Algorithms for Real Parameter Optimization , 1990, FOGA.

[24]  A. Michell LVIII. The limits of economy of material in frame-structures , 1904 .

[25]  Natalio Krasnogor,et al.  Self Generating Metaheuristics in Bioinformatics: The Proteins Structure Comparison Case , 2004, Genetic Programming and Evolvable Machines.

[26]  M. Newman,et al.  Mean-field solution of the small-world network model. , 1999, Physical review letters.

[27]  M.A. Lee,et al.  Integrating design stage of fuzzy systems using genetic algorithms , 1993, [Proceedings 1993] Second IEEE International Conference on Fuzzy Systems.

[28]  L. Amaral,et al.  Small-World Networks: Evidence for a Crossover Picture , 1999, cond-mat/9903108.

[29]  E. Weinberger NP Completeness of Kauffman's N-k Model, A Tuneable Rugged Fitness Landscape , 1996 .

[30]  Seyed Taghi Akhavan Niaki,et al.  Statistical Design of Genetic Algorithms for Combinatorial Optimization Problems , 2011 .

[31]  David Millán-Ruiz,et al.  A Memetic Algorithm for Workforce Distribution in Dynamic Multi-Skill Call Centres , 2010, EvoCOP.

[32]  Natalio Krasnogor,et al.  Adaptive Cellular Memetic Algorithms , 2009, Evolutionary Computation.

[33]  Natalio Krasnogor,et al.  Automated Self-Assembly Programming Paradigm: A Particle Swarm Realization , 2006 .

[34]  Michèle Sebag,et al.  Extreme Value Based Adaptive Operator Selection , 2008, PPSN.