Recognizable Formal Series on Trees and Cofree Coalgebraic Systems
暂无分享,去创建一个
[1] H. Allen. Invariant radical splittings: A Hopf approach☆ , 1973 .
[2] M. Burgin,et al. LINEAR Ω-ALGEBRAS , 1975 .
[3] George Gratzer,et al. Universal Algebra , 1979 .
[4] Jean Berstel,et al. Recognizable Formal Power Series on Trees , 1982, Theor. Comput. Sci..
[5] Symeon Bozapalidis,et al. The Rank of a Formal Tree Power Series , 1983, Theor. Comput. Sci..
[6] R. Block. Commutative Hopf algebras, lie coalgebras, and divided powers , 1985 .
[7] P. Leroux,et al. Generalized dual coalgebras of algebras, with applications to cofree coalgebras , 1985 .
[8] G. Griffing. The cofree nonassociative coalgebra , 1988 .
[9] G. Griffing. A nonisomorphism theorem for cofree Lie coalgebras , 1988 .
[10] Symeon Bozapalidis,et al. Représentations Matricielles Des Séries D'Arbre Reconnaissables , 1989, RAIRO Theor. Informatics Appl..
[11] S. Bozapalidis. Effective constructors the formal series of trees (French) , 1990 .
[12] C. Reutenauer. Free Lie Algebras , 1993 .
[13] M. Kapranov,et al. Koszul duality for Operads , 1994, 0709.1228.