Layered adaptive importance sampling

Monte Carlo methods represent the de facto standard for approximating complicated integrals involving multidimensional target distributions. In order to generate random realizations from the target distribution, Monte Carlo techniques use simpler proposal probability densities to draw candidate samples. The performance of any such method is strictly related to the specification of the proposal distribution, such that unfortunate choices easily wreak havoc on the resulting estimators. In this work, we introduce a layered (i.e., hierarchical) procedure to generate samples employed within a Monte Carlo scheme. This approach ensures that an appropriate equivalent proposal density is always obtained automatically (thus eliminating the risk of a catastrophic performance), although at the expense of a moderate increase in the complexity. Furthermore, we provide a general unified importance sampling (IS) framework, where multiple proposal densities are employed and several IS schemes are introduced by applying the so-called deterministic mixture approach. Finally, given these schemes, we also propose a novel class of adaptive importance samplers using a population of proposals, where the adaptation is driven by independent parallel or interacting Markov chain Monte Carlo (MCMC) chains. The resulting algorithms efficiently combine the benefits of both IS and MCMC methods.

[1]  A. Doucet,et al.  Particle Markov chain Monte Carlo methods , 2010 .

[2]  Dirk P. Kroese,et al.  An Efficient Algorithm for Rare-event Probability Estimation, Combinatorial Optimization, and Counting , 2008 .

[3]  Nicolas Chopin,et al.  Sequential Monte Carlo on large binary sampling spaces , 2011, Statistics and Computing.

[4]  Luca Martino,et al.  Smelly parallel MCMC chains , 2015, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[5]  Martin D. Weinberg,et al.  Computing the Bayes Factor from a Markov chain Monte Carlo Simulation of the Posterior Distribution , 2009, 0911.1777.

[6]  A. Owen,et al.  Safe and Effective Importance Sampling , 2000 .

[7]  Radford M. Neal Annealed importance sampling , 1998, Stat. Comput..

[8]  Jean-François Richard,et al.  Improving MCMC Using Efficient Importance Sampling , 2006, Comput. Stat. Data Anal..

[9]  Arnaud Doucet,et al.  Sequentially interacting Markov chain Monte Carlo methods , 2010, 1211.2582.

[10]  H. Haario,et al.  An adaptive Metropolis algorithm , 2001 .

[11]  Leonidas J. Guibas,et al.  Optimally combining sampling techniques for Monte Carlo rendering , 1995, SIGGRAPH.

[12]  Nando de Freitas,et al.  An Introduction to MCMC for Machine Learning , 2004, Machine Learning.

[13]  Jun S. Liu,et al.  Monte Carlo strategies in scientific computing , 2001 .

[14]  S. Chib,et al.  Marginal Likelihood From the Metropolis–Hastings Output , 2001 .

[15]  Andreas M. Ali,et al.  An Empirical Study of Collaborative Acoustic Source Localization , 2007, 2007 6th International Symposium on Information Processing in Sensor Networks.

[16]  Chao Yang,et al.  Learn From Thy Neighbor: Parallel-Chain and Regional Adaptive MCMC , 2009 .

[17]  Nial Friel,et al.  Estimating the model evidence: a review , 2011 .

[18]  Christian P. Robert,et al.  Monte Carlo Statistical Methods (Springer Texts in Statistics) , 2005 .

[19]  G. Warnes The Normal Kernel Coupler: An Adaptive Markov Chain Monte Carlo Method for Efficiently Sampling From Multi-Modal Distributions , 2001 .

[20]  A. Doucet,et al.  A Tutorial on Particle Filtering and Smoothing: Fifteen years later , 2008 .

[21]  William J. Fitzgerald,et al.  Markov chain Monte Carlo methods with applications to signal processing , 2001, Signal Process..

[22]  Frederik Beaujean,et al.  Initializing adaptive importance sampling with Markov chains , 2013, 1304.7808.

[23]  Jukka Corander,et al.  MCMC-Driven Adaptive Multiple Importance Sampling , 2015 .

[24]  Luca Martino,et al.  Orthogonal MCMC algorithms , 2014, 2014 IEEE Workshop on Statistical Signal Processing (SSP).

[25]  David Luengo,et al.  Generalized Multiple Importance Sampling , 2015, Statistical Science.

[26]  John W. Fisher,et al.  Nonparametric belief propagation for self-localization of sensor networks , 2005, IEEE Journal on Selected Areas in Communications.

[27]  W. Marsden I and J , 2012 .

[28]  Hoon Kim,et al.  Monte Carlo Statistical Methods , 2000, Technometrics.

[29]  Jean-Michel Marin,et al.  Adaptive importance sampling in general mixture classes , 2007, Stat. Comput..

[30]  Jun S. Liu,et al.  The Multiple-Try Method and Local Optimization in Metropolis Sampling , 2000 .

[31]  Paul Fearnhead,et al.  An Adaptive Sequential Monte Carlo Sampler , 2010, 1005.1193.

[32]  Christian P. Robert,et al.  Using Parallel Computation to Improve Independent Metropolis–Hastings Based Estimation , 2010, ArXiv.

[33]  Jean-Marie Cornuet,et al.  Adaptive Multiple Importance Sampling , 2009, 0907.1254.

[34]  Petar M. Djuric,et al.  Gibbs sampling approach for generation of truncated multivariate Gaussian random variables , 1999, 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258).

[35]  Mónica F. Bugallo,et al.  Adaptive importance sampling in signal processing , 2015, Digit. Signal Process..

[36]  Jukka Corander,et al.  An adaptive population importance sampler , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[37]  Luca Martino,et al.  Fully adaptive Gaussian mixture Metropolis-Hastings algorithm , 2012, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[38]  Allen Caldwell,et al.  Target Density Normalization for Markov Chain Monte Carlo Algorithms , 2014, 1410.7149.

[39]  P. Moral,et al.  Interacting Markov chain Monte Carlo methods for solving nonlinear measure-valued equations , 2010, 1009.5749.

[40]  N. Chopin A sequential particle filter method for static models , 2002 .

[41]  J. Skilling Nested sampling for general Bayesian computation , 2006 .

[42]  Xiaodong Wang,et al.  Monte Carlo methods for signal processing: a review in the statistical signal processing context , 2005, IEEE Signal Processing Magazine.

[43]  Bruno Tuffin,et al.  Markov chain importance sampling with applications to rare event probability estimation , 2011, Stat. Comput..

[44]  Roberto Casarin,et al.  Interacting multiple try algorithms with different proposal distributions , 2010, Statistics and Computing.

[45]  C. Geyer Markov Chain Monte Carlo Maximum Likelihood , 1991 .

[46]  Xiaodong Wang,et al.  Monte Carlo methods for signal processing , 2005 .

[47]  R. Carroll,et al.  Advanced Markov Chain Monte Carlo Methods: Learning from Past Samples , 2010 .

[48]  R. Douc,et al.  Convergence of Adaptive Sampling Schemes , 2007, 0708.0711.

[49]  J. Marin,et al.  Consistency of the Adaptive Multiple Importance Sampling , 2012, 1211.2548.

[50]  Nial Friel,et al.  Estimating the evidence – a review , 2011, 1111.1957.

[51]  Zhenzhou Lu,et al.  A novel adaptive importance sampling algorithm based on Markov chain and low-discrepancy sequence , 2013 .

[52]  R. Douc,et al.  Minimum variance importance sampling via Population Monte Carlo , 2007 .

[53]  Luca Martino,et al.  A generalization of the adaptive rejection sampling algorithm , 2010, Stat. Comput..

[54]  Mónica F. Bugallo,et al.  Efficient Multiple Importance Sampling Estimators , 2015, IEEE Signal Processing Letters.

[55]  P. Moral,et al.  Sequential Monte Carlo samplers , 2002, cond-mat/0212648.

[56]  Jean-Michel Marin,et al.  Convergence of Adaptive Sampling Schemes , 2004 .

[57]  J. Marin,et al.  Population Monte Carlo , 2004 .

[58]  Rong Chen,et al.  Monte Carlo Bayesian Signal Processing for Wireless Communications , 2002, J. VLSI Signal Process..

[59]  Jukka Corander,et al.  An Adaptive Population Importance Sampler: Learning From Uncertainty , 2015, IEEE Transactions on Signal Processing.

[60]  Radford M. Neal MCMC Using Ensembles of States for Problems with Fast and Slow Variables such as Gaussian Process Regression , 2011, 1101.0387.

[61]  Robert Kohn,et al.  Markov Interacting Importance Samplers , 2015 .

[62]  G. Parisi,et al.  Simulated tempering: a new Monte Carlo scheme , 1992, hep-lat/9205018.

[63]  Christophe Andrieu,et al.  A tutorial on adaptive MCMC , 2008, Stat. Comput..