Spatiotemporal Modeling of Node Temperatures in Supercomputers
暂无分享,去创建一个
Brian J Reich | Curtis B Storlie | William N Rust | Lawrence O Ticknor | Amanda M Bonnie | Andrew J Montoya | Sarah E Michalak | B. Reich | C. Storlie | S. Michalak | A. Bonnie | L. Ticknor | W. Rust | A. Montoya
[1] A. Davison,et al. Statistical Modeling of Spatial Extremes , 2012, 1208.3378.
[2] Bill Ravens,et al. An Introduction to Copulas , 2000, Technometrics.
[3] R. Nelsen. An Introduction to Copulas , 1998 .
[4] Alan E. Gelfand,et al. Spatial process modelling for univariate and multivariate dynamic spatial data , 2005 .
[5] C. Peirce. An unpublished manuscript) , 2016 .
[6] N. Cressie,et al. Classes of nonseparable, spatio-temporal stationary covariance functions , 1999 .
[7] Leonhard Held,et al. Gaussian Markov Random Fields: Theory and Applications , 2005 .
[8] Stan Z. Li,et al. Markov Random Field Modeling in Image Analysis , 2001, Computer Science Workbench.
[9] S. E. Michalak,et al. Assessment of the Impact of Cosmic-Ray-Induced Neutrons on Hardware in the Roadrunner Supercomputer , 2012, IEEE Transactions on Device and Materials Reliability.
[10] Yoshua Bengio,et al. A hybrid Pareto model for asymmetric fat-tailed data: the univariate case , 2009 .
[11] Heather Quinn,et al. A Bayesian Reliability Analysis of Neutron-Induced Errors in High Performance Computing Hardware , 2013 .
[12] Yoshua Bengio,et al. A Hybrid Pareto Model for Asymmetric Fat-Tail Data , 2006 .
[13] B. Carlin,et al. Spatial Analyses of Periodontal Data Using Conditionally Autoregressive Priors Having Two Classes of Neighbor Relations , 2007 .
[14] Laurens de Haan,et al. Stationary max-stable fields associated to negative definite functions. , 2008, 0806.2780.
[15] M. Wall. A close look at the spatial structure implied by the CAR and SAR models , 2004 .
[16] Jonathan A. Tawn,et al. Dependence modelling for spatial extremes , 2012 .
[17] Jack J. Dongarra,et al. LINPACK Benchmark , 2011, Encyclopedia of Parallel Computing.
[18] T. Gneiting. Nonseparable, Stationary Covariance Functions for Space–Time Data , 2002 .
[19] B. Reich. Spatiotemporal quantile regression for detecting distributional changes in environmental processes , 2012, Journal of the Royal Statistical Society. Series C, Applied statistics.
[20] Richard L. Smith,et al. MAX-STABLE PROCESSES AND SPATIAL EXTREMES , 2005 .
[21] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.
[22] S. Coles,et al. An Introduction to Statistical Modeling of Extreme Values , 2001 .
[23] A. Frigessi,et al. A Dynamic Mixture Model for Unsupervised Tail Estimation without Threshold Selection , 2002 .
[24] Bradley P Carlin,et al. MODELING TEMPORAL GRADIENTS IN REGIONALLY AGGREGATED CALIFORNIA ASTHMA HOSPITALIZATION DATA. , 2013, The annals of applied statistics.
[25] Alan E. Gelfand,et al. Hierarchical modeling for extreme values observed over space and time , 2009, Environmental and Ecological Statistics.
[26] H. Rue. Fast sampling of Gaussian Markov random fields , 2000 .
[27] Markus Junker,et al. Estimating the tail-dependence coefficient: Properties and pitfalls , 2005 .
[28] Noel A Cressie,et al. Statistics for Spatio-Temporal Data , 2011 .
[29] S. Padoan,et al. Likelihood-Based Inference for Max-Stable Processes , 2009, 0902.3060.
[30] A. Davison,et al. Composite likelihood estimation for the Brown–Resnick process , 2013 .
[31] J. Tawn,et al. Efficient inference for spatial extreme value processes associated to log-Gaussian random functions , 2014 .
[32] Ying C MacNab,et al. Regression B‐spline smoothing in Bayesian disease mapping: with an application to patient safety surveillance , 2007, Statistics in medicine.
[33] A. McNeil,et al. The t Copula and Related Copulas , 2005 .
[34] David B. Dunson,et al. Bayesian Data Analysis , 2010 .
[35] J. R. Wallis,et al. An Approach to Statistical Spatial-Temporal Modeling of Meteorological Fields , 1994 .
[36] Yoshua Bengio,et al. A Hybrid Pareto Mixture for Conditional Asymmetric Fat-Tailed Distributions , 2009, IEEE Transactions on Neural Networks.
[37] Brian J Reich,et al. A HIERARCHICAL MAX-STABLE SPATIAL MODEL FOR EXTREME PRECIPITATION. , 2013, The annals of applied statistics.
[38] R. Tibshirani,et al. Generalized Additive Models , 1986 .
[39] Kristen Foley,et al. Extreme value analysis for evaluating ozone control strategies. , 2013, The annals of applied statistics.
[40] Scott Pakin,et al. Modeling and Predicting Power Consumption of High Performance Computing Jobs , 2014 .
[41] M. Stein. Space–Time Covariance Functions , 2005 .
[42] C. J. Stone,et al. A study of logspline density estimation , 1991 .
[43] Janet E. Heffernan,et al. Dependence Measures for Extreme Value Analyses , 1999 .
[44] Raphael Huser,et al. Space–time modelling of extreme events , 2012, 1201.3245.
[45] Bradley P. Carlin,et al. Hierarchical Spatio-Temporal Mapping of Disease Rates , 1997 .