Exact algorithms for linear matrix inequalities

Let $A(x)=A\_0+x\_1A\_1+...+x\_nA\_n$ be a linear matrix, or pencil, generated by given symmetric matrices $A\_0,A\_1,...,A\_n$ of size $m$ with rational entries. The set of real vectors x such that the pencil is positive semidefinite is a convex semi-algebraic set called spectrahedron, described by a linear matrix inequality (LMI). We design an exact algorithm that, up to genericity assumptions on the input matrices, computes an exact algebraic representation of at least one point in the spectrahedron, or decides that it is empty. The algorithm does not assume the existence of an interior point, and the computed point minimizes the rank of the pencil on the spectrahedron. The degree $d$ of the algebraic representation of the point coincides experimentally with the algebraic degree of a generic semidefinite program associated to the pencil. We provide explicit bounds for the complexity of our algorithm, proving that the maximum number of arithmetic operations that are performed is essentially quadratic in a multilinear B\'ezout bound of $d$. When $m$ (resp. $n$) is fixed, such a bound, and hence the complexity, is polynomial in $n$ (resp. $m$). We conclude by providing results of experiments showing practical improvements with respect to state-of-the-art computer algebra algorithms.

[1]  Bernd Sturmfels,et al.  Quartic spectrahedra , 2013, Math. Program..

[2]  C. Vinzant,et al.  Real Algebraic Geometry in Convex Optimization , 2011 .

[3]  Éric Schost,et al.  On the geometry of polar varieties , 2009, Applicable Algebra in Engineering, Communication and Computing.

[4]  Jean-Charles Faugère,et al.  Efficient Computation of Zero-Dimensional Gröbner Bases by Change of Ordering , 1993, J. Symb. Comput..

[5]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[6]  B. Bank,et al.  Polar varieties and efficient real elimination , 2000 .

[7]  I. Shafarevich Basic algebraic geometry , 1974 .

[8]  Monique Laurent,et al.  Semidefinite optimization , 2019, Graphs and Geometry.

[9]  Bevan K. Youse,et al.  Introduction to real analysis , 1972 .

[10]  Anton van den Hengel,et al.  Semidefinite Programming , 2014, Computer Vision, A Reference Guide.

[11]  Fabrice Rouillier,et al.  Solving Zero-Dimensional Systems Through the Rational Univariate Representation , 1999, Applicable Algebra in Engineering, Communication and Computing.

[12]  Erich Kaltofen,et al.  Certificates of impossibility of Hilbert-Artin representations of a given degree for definite polynomials and functions , 2012, ISSAC.

[13]  Stephen Melczer,et al.  Symbolic-Numeric Tools for Analytic Combinatorics in Several Variables , 2016, ISSAC.

[14]  J. Lasserre Moments, Positive Polynomials And Their Applications , 2009 .

[15]  D. Henrion Semidefinite geometry of the numerical range , 2008, 0812.1624.

[16]  Éric Schost,et al.  A Nearly Optimal Algorithm for Deciding Connectivity Queries in Smooth and Bounded Real Algebraic Sets , 2013, J. ACM.

[17]  Kristian Ranestad,et al.  A general formula for the algebraic degree in semidefinite programming , 2007, math/0701877.

[18]  J. Munkres,et al.  Calculus on Manifolds , 1965 .

[19]  Joe W. Harris,et al.  Algebraic Geometry: A First Course , 1995 .

[20]  Joos Heintz,et al.  Description of the connected components of a semialgebraic set in single exponential time , 1994, Discret. Comput. Geom..

[21]  Leonid Khachiyan,et al.  On the Complexity of Semidefinite Programs , 1997, J. Glob. Optim..

[22]  James Renegar,et al.  On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part III: Quantifier Elimination , 1992, J. Symb. Comput..

[23]  Mohab Safey El Din,et al.  Real Root Finding for Rank Defects in Linear Hankel Matrices , 2015, ISSAC.

[24]  W. Böge,et al.  Quantifier Elimination for Real Closed Fields , 1985, AAECC.

[25]  Jean-Charles Faugère,et al.  Computing loci of rank defects of linear matrices using Gröbner bases and applications to cryptology , 2010, ISSAC.

[26]  K. Schmüdgen TheK-moment problem for compact semi-algebraic sets , 1991 .

[27]  Mohab Safey El Din,et al.  Real root finding for determinants of linear matrices , 2014, J. Symb. Comput..

[28]  Pablo A. Parrilo,et al.  Semidefinite programming relaxations for semialgebraic problems , 2003, Math. Program..

[29]  Marie-Françoise Roy,et al.  On the combinatorial and algebraic complexity of Quanti erEliminationS , 1994 .

[30]  Mathieu Claeys,et al.  Mesures d'occupation et relaxations semi-définies pour la commande optimale , 2013 .

[31]  Jean B. Lasserre,et al.  A semidefinite programming approach to the generalized problem of moments , 2007, Math. Program..

[32]  Arkadi Nemirovski,et al.  Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.

[33]  D. S. Arnon,et al.  Algorithms in real algebraic geometry , 1988 .

[34]  Ariel Waissbein,et al.  Deformation Techniques for Sparse Systems , 2006, Found. Comput. Math..

[35]  Jean-Charles Faugère,et al.  On the complexity of the generalized MinRank problem , 2011, J. Symb. Comput..

[36]  B. Reznick,et al.  Sums of squares of real polynomials , 1995 .

[37]  Marc Giusti,et al.  A Gröbner Free Alternative for Polynomial System Solving , 2001, J. Complex..

[38]  Sophie Tarbouriech,et al.  Stability and Stabilization of Linear Systems with Saturating Actuators , 2011 .

[39]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[40]  Jean Charles Faugère,et al.  A new efficient algorithm for computing Gröbner bases without reduction to zero (F5) , 2002, ISSAC '02.

[41]  George E. Collins,et al.  Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975 .

[42]  Éric Schost,et al.  Polar varieties and computation of one point in each connected component of a smooth real algebraic set , 2003, ISSAC '03.

[43]  Lihong Zhi,et al.  Computing Rational Points in Convex Semialgebraic Sets and Sum of Squares Decompositions , 2010, SIAM J. Optim..

[44]  Jiawang Nie,et al.  Optimality conditions and finite convergence of Lasserre’s hierarchy , 2012, Math. Program..

[45]  Lihong Zhi,et al.  Computing real solutions of polynomial systems via low-rank moment matrix completion , 2012, ISSAC.

[46]  Chenqi Mou,et al.  Sparse FGLM algorithms , 2013, J. Symb. Comput..

[47]  Rekha R. Thomas,et al.  Semidefinite Optimization and Convex Algebraic Geometry , 2012 .

[48]  David A. Cox,et al.  Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3/e (Undergraduate Texts in Mathematics) , 2007 .

[49]  T. Wörmann,et al.  Positive polynomials on compact sets , 2001 .

[50]  K. Schmüdgen TheK-moment problem for compact semi-algebraic sets , 1991 .

[51]  V. Powers,et al.  An algorithm for sums of squares of real polynomials , 1998 .

[52]  J. Lasserre,et al.  Handbook on Semidefinite, Conic and Polynomial Optimization , 2012 .

[53]  J. Renegar,et al.  On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part I , 1989 .

[54]  D. Hilbert Über die Darstellung definiter Formen als Summe von Formenquadraten , 1888 .

[55]  A. Varvitsiotis Combinatorial conditions for low rank solutions in semidefinite programming , 2013 .

[56]  Bernd Sturmfels,et al.  The algebraic degree of semidefinite programming , 2010, Math. Program..

[57]  James Renegar On the computational complexity and geome-try of the first-order theory of the reals , 1992 .

[58]  Éric Schost,et al.  Properness Defects of Projections and Computation of at Least One Point in Each Connected Component of a Real Algebraic Set , 2004, Discret. Comput. Geom..

[59]  D. Eisenbud Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .

[60]  Bernd Sturmfels,et al.  Generic Spectrahedral Shadows , 2014, SIAM J. Optim..

[61]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[62]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[63]  Éric Schost,et al.  Sharp estimates for triangular sets , 2004, ISSAC '04.

[64]  David Eisenbud,et al.  LINEAR SECTIONS OF DETERMINANTAL VARIETIES , 1988 .

[65]  J. Faugère A new efficient algorithm for computing Gröbner bases (F4) , 1999 .

[66]  J. G. Pierce,et al.  Geometric Algorithms and Combinatorial Optimization , 2016 .

[67]  Bernd Sturmfels,et al.  Exact Solutions in Structured Low-Rank Approximation , 2013, SIAM J. Matrix Anal. Appl..

[68]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[69]  Bernd Sturmfels,et al.  Quartic curves and their bitangents , 2010, J. Symb. Comput..

[70]  Dima Grigoriev,et al.  Solving Systems of Polynomial Inequalities in Subexponential Time , 1988, J. Symb. Comput..

[71]  D. Sattinger,et al.  Calculus on Manifolds , 1986 .

[72]  Roland Hildebrand Spectrahedral cones generated by rank 1 matrices , 2016, J. Glob. Optim..

[73]  Claus Scheiderer,et al.  Semidefinite Representation for Convex Hulls of Real Algebraic Curves , 2012, SIAM J. Appl. Algebra Geom..

[74]  Lihong Zhi,et al.  Computing rational solutions of linear matrix inequalities , 2013, ISSAC '13.

[75]  Bernd Sturmfels,et al.  A polyhedral method for solving sparse polynomial systems , 1995 .

[76]  Mohab Safey El Din,et al.  Probabilistic Algorithm for Polynomial Optimization over a Real Algebraic Set , 2013, SIAM J. Optim..

[77]  Claus Scheiderer,et al.  Sums of squares of polynomials with rational coefficients , 2012, 1209.2976.

[78]  Henri Lombardi,et al.  An Elementary Recursive Bound for Effective Positivstellensatz and Hilbert’s 17th problem , 2014, Memoirs of the American Mathematical Society.

[79]  Markus Schweighofer,et al.  On the complexity of Putinar's Positivstellensatz , 2005, J. Complex..

[80]  Jean-Charles Faugère,et al.  Polynomial Systems Solving by Fast Linear Algebra , 2013, ArXiv.

[81]  Rekha R. Thomas,et al.  The Euclidean Distance Degree of an Algebraic Variety , 2013, Foundations of Computational Mathematics.

[82]  Jean-Charles Faugère,et al.  FGb: A Library for Computing Gröbner Bases , 2010, ICMS.

[83]  M. Laurent Sums of Squares, Moment Matrices and Optimization Over Polynomials , 2009 .

[84]  James Renegar,et al.  On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part I: Introduction. Preliminaries. The Geometry of Semi-Algebraic Sets. The Decision Problem for the Existential Theory of the Reals , 1992, J. Symb. Comput..

[85]  Mohab Safey El Din,et al.  Properness defects of projections and computation of one point in each connected component of a real algebraic set , 2003 .

[86]  Emmanuel Trélat,et al.  Nonlinear Optimal Control via Occupation Measures and LMI-Relaxations , 2007, SIAM J. Control. Optim..

[87]  Didier Henrion,et al.  Optimization on linear matrix inequalities for polynomial systems control , 2013, 1309.3112.

[88]  J. William Helton,et al.  Sufficient and Necessary Conditions for Semidefinite Representability of Convex Hulls and Sets , 2007, SIAM J. Optim..

[89]  A. J. Goldman,et al.  Some geometric results in semidefinite programming , 1995, J. Glob. Optim..

[90]  Igor Klep,et al.  An Exact Duality Theory for Semidefinite Programming Based on Sums of Squares , 2012, Math. Oper. Res..

[91]  Chenqi Mou,et al.  Fast algorithm for change of ordering of zero-dimensional Gröbner bases with sparse multiplication matrices , 2011, ISSAC '11.

[92]  Jean-Charles Faugère,et al.  Critical points and Gröbner bases: the unmixed case , 2012, ISSAC.

[93]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[94]  Raman Sanyal,et al.  Deciding Polyhedrality of Spectrahedra , 2011, SIAM J. Optim..

[95]  T. Willmore Algebraic Geometry , 1973, Nature.