Self-organized Segregation on the Grid

We consider an agent-based model with exponentially distributed waiting times in which two types of agents interact locally over a graph, and based on this interaction and on the value of a common intolerance threshold τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}, decide whether to change their types. This is equivalent to a zero-temperature ising model with Glauber dynamics, an asynchronous cellular automaton with extended Moore neighborhoods, or a Schelling model of self-organized segregation in an open system, and has applications in the analysis of social and biological networks, and spin glasses systems. Some rigorous results were recently obtained in the theoretical computer science literature, and this work provides several extensions. We enlarge the intolerance interval leading to the expected formation of large segregated regions of agents of a single type from the known size ϵ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon >0$$\end{document} to size ≈0.134\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\approx 0.134$$\end{document}. Namely, we show that for 0.433<τ<1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.433< \tau < 1/2$$\end{document} (and by symmetry 1/2<τ<0.567\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/2<\tau <0.567$$\end{document}), the expected size of the largest segregated region containing an arbitrary agent is exponential in the size of the neighborhood. We further extend the interval leading to expected large segregated regions to size ≈0.312\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\approx 0.312$$\end{document} considering “almost segregated” regions, namely regions where the ratio of the number of agents of one type and the number of agents of the other type vanishes quickly as the size of the neighborhood grows. In this case, we show that for 0.344<τ≤0.433\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.344 < \tau \le 0.433$$\end{document} (and by symmetry for 0.567≤τ<0.656\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.567 \le \tau <0.656$$\end{document}) the expected size of the largest almost segregated region containing an arbitrary agent is exponential in the size of the neighborhood. This behavior is reminiscent of supercritical percolation, where small clusters of empty sites can be observed within any sufficiently large region of the occupied percolation cluster. The exponential bounds that we provide also imply that complete segregation, where agents of a single type cover the whole grid, does not occur with high probability for p=1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=1/2$$\end{document} and the range of intolerance considered.

[1]  H. Peyton Young,et al.  Individual Strategy and Social Structure , 2020 .

[2]  Nicole Immorlica,et al.  Exponential Segregation in a Two-Dimensional Schelling Model with Tolerant Individuals , 2015, SODA.

[3]  George Barmpalias,et al.  Minority Population in the One-Dimensional Schelling Model of Segregation , 2015, Journal of Statistical Physics.

[4]  George Barmpalias,et al.  Unperturbed Schelling Segregation in Two or Three Dimensions , 2015, ArXiv.

[5]  George Barmpalias,et al.  Tipping Points in 1-Dimensional Schelling Models with Switching Agents , 2014, Journal of Statistical Physics.

[6]  Dana Randall,et al.  Clustering and Mixing Times for Segregation Models on ℤ2 , 2014, SODA.

[7]  M. Damron,et al.  Subdiffusive concentration in first passage percolation , 2014, 1401.0917.

[8]  Chen Hongsong,et al.  Networks, Crowds, and Markets: Reasoning about a Highly Connected World (Easley, D. and Kleinberg, J.; 2010) [Book Review] , 2013, IEEE Technology and Society Magazine.

[9]  George Barmpalias,et al.  Digital morphogenesis via Schelling segregation , 2013, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[10]  Nicole Immorlica,et al.  An analysis of one-dimensional schelling segregation , 2012, STOC '12.

[11]  R. Morris Zero-temperature Glauber dynamics on $${\mathbb{Z}^d}$$ , 2011 .

[12]  Junfu Zhang Tipping and Residential Segregation: A Unified Schelling Model , 2011, SSRN Electronic Journal.

[13]  Thomas M Liggett,et al.  Stochastic models for large interacting systems and related correlation inequalities , 2010, Proceedings of the National Academy of Sciences.

[14]  E. David,et al.  Networks, Crowds, and Markets: Reasoning about a Highly Connected World , 2010 .

[15]  Moez Draief,et al.  Epidemics and Rumours in Complex Networks , 2010 .

[16]  A. Montanari,et al.  Majority dynamics on trees and the dynamic cavity method , 2009, 0907.0449.

[17]  R. Morris Zero-temperature Glauber dynamics on Z^d , 2008, 0809.0353.

[18]  S. Fortunato,et al.  Statistical physics of social dynamics , 2007, 0710.3256.

[19]  S. Solomon,et al.  Ising, Schelling and self-organising segregation , 2007, physics/0701051.

[20]  Andrzej Rucinski,et al.  Random graphs , 2006, SODA.

[21]  F. Martinelli,et al.  Phase ordering after a deep quench: the stochastic Ising and hard core gas models on a tree , 2004, math/0412450.

[22]  C. Schulze Potts-Like Model For Ghetto Formation In Multi-Cultural Societies , 2004, cond-mat/0409679.

[23]  Olivier Garet,et al.  Large deviations for the chemical distance in supercritical Bernoulli percolation , 2004, math/0409317.

[24]  Junfu Zhang,et al.  Residential segregation in an all-integrationist world , 2004 .

[25]  Junfu Zhang,et al.  A DYNAMIC MODEL OF RESIDENTIAL SEGREGATION , 2004 .

[26]  Matthew O. Jackson,et al.  On the formation of interaction networks in social coordination games , 2002, Games Econ. Behav..

[27]  H. Meyer-Ortmanns IMMIGRATION, INTEGRATION AND GHETTO FORMATION , 2002, cond-mat/0209242.

[28]  R. Schonmann,et al.  Stretched Exponential Fixation in Stochastic Ising Models at Zero Temperature , 2002 .

[29]  Herbert W. Hethcote,et al.  The Mathematics of Infectious Diseases , 2000, SIAM Rev..

[30]  T. Liggett,et al.  Stochastic Interacting Systems: Contact, Voter and Exclusion Processes , 1999 .

[31]  M. Talagrand Concentration of measure and isoperimetric inequalities in product spaces , 1994, math/9406212.

[32]  H. Kesten On the Speed of Convergence in First-Passage Percolation , 1993 .

[33]  T. Liggett Interacting Particle Systems , 1985 .

[34]  Béla Bollobás,et al.  Random Graphs, Second Edition , 2001, Cambridge Studies in Advanced Mathematics.

[35]  R. Arratia Site Recurrence for Annihilating Random Walks on $Z_d$ , 1983 .

[36]  T. E. Harris A Correlation Inequality for Markov Processes in Partially Ordered State Spaces , 1977 .

[37]  P. Ney,et al.  Some Problems on Random Intervals and Annihilating Particles , 1974 .

[38]  Thomas C. Schelling,et al.  Dynamic models of segregation , 1971 .

[39]  C. Fortuin,et al.  Correlation inequalities on some partially ordered sets , 1971 .

[40]  Stefan Grosskinsky Warwick,et al.  Interacting Particle Systems , 2016 .

[41]  J. Kleinberg Algorithmic Game Theory: Cascading Behavior in Networks: Algorithmic and Economic Issues , 2007 .

[42]  J. van Leeuwen,et al.  Cellular Automata , 2002, Lecture Notes in Computer Science.

[43]  M. Mobius The Formation of Ghettos as a Local Interaction Phenomenon , 2000 .

[44]  T. Schelling Models of Segregation , 1969 .

[45]  Andrew Ilachinski,et al.  Cellular automata , 1968 .