Direction finding of coherent non-circular signals for conformal array using geometric algebra

[1]  Heng-Ming Tai,et al.  2-D direction-of-arrival estimation of coherent signals using cross-correlation matrix , 2008, Signal Process..

[2]  Yong-Xin Guo,et al.  Frequency-invariant pattern synthesis of conformal array antenna with low cross-polarisation , 2008 .

[3]  R. Compton,et al.  Angle estimation using a polarization sensitive array , 1991 .

[4]  Joan Lasenby,et al.  Pattern analysis of conformal array based on geometric algebra , 2011 .

[5]  Wei-Ping Zhu,et al.  Efficient Two-Dimensional Direction-of-Arrival Estimation for a Mixture of Circular and Noncircular Sources , 2016, IEEE Sensors Journal.

[6]  S. Unnikrishna Pillai,et al.  Forward/backward spatial smoothing techniques for coherent signal identification , 1989, IEEE Trans. Acoust. Speech Signal Process..

[7]  Nanning Zheng,et al.  Two-Dimensional Direction Estimation for a Mixture of Noncoherent and Coherent Signals , 2015, IEEE Transactions on Signal Processing.

[8]  G. Deschamps Techniques for Handling Elliptically Polarized Waves with Special Reference to Antennas: Part II - Geometrical Representation of the Polarization of a Plane Electromagnetic Wave , 1951, Proceedings of the IRE.

[9]  Petre Stoica,et al.  MUSIC, maximum likelihood, and Cramer-Rao bound , 1989, IEEE Transactions on Acoustics, Speech, and Signal Processing.

[10]  Arye Nehorai,et al.  Vector-sensor array processing for electromagnetic source localization , 1994, IEEE Trans. Signal Process..

[11]  Xin Yuan Coherent sources direction finding and polarization estimation with various compositions of spatially spread polarized antenna arrays , 2014, Signal Process..