Tomograms in the quantum–classical transition
暂无分享,去创建一个
[1] Olga V. Man'ko,et al. Quantum states in probability representation and tomography , 1997 .
[2] M. Markov. Invariants and the evolution of nonstationary quantum systems , 1989 .
[3] Erwin Schrödinger,et al. Quantisierung als Eigenwertproblem , 1925 .
[4] W. Heisenberg. Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik , 1927 .
[5] Jorge V. José,et al. Chaos in classical and quantum mechanics , 1990 .
[6] Vladimir I. Man’ko,et al. GENERALIZED UNCERTAINTY RELATION AND CORRELATED COHERENT STATES , 1980 .
[7] M. A. Man'ko,et al. Quasidistributions, tomography, and fractional Fourier transform in signal analysis , 2000 .
[8] E. Schrödinger. Die gegenwärtige Situation in der Quantenmechanik , 1935, Naturwissenschaften.
[9] 곽순섭,et al. Generalized Functions , 2006, Theoretical and Mathematical Physics.
[10] Classical-like description of quantum dynamics by means of symplectic tomography , 1996, quant-ph/9609026.
[11] Alternative commutation relations, star products and tomography , 2001, quant-ph/0112110.
[12] R. Glauber. Coherent and incoherent states of the radiation field , 1963 .
[13] L. Landau. Das Dämpfungsproblem in der Wellenmechanik , 1927 .
[14] R. Feynman,et al. Space-Time Approach to Non-Relativistic Quantum Mechanics , 1948 .
[15] J. E. Moyal. Quantum mechanics as a statistical theory , 1949, Mathematical Proceedings of the Cambridge Philosophical Society.
[16] Stefano Mancini,et al. Wigner function and probability distribution for shifted and squeezed quadratures , 1995 .
[17] P. Lugol. Annalen der Physik , 1906 .
[18] Interference and entanglement: An intrinsic approach , 2002, quant-ph/0207033.
[19] V. Man'ko,et al. Star-Product of Generalized Wigner-Weyl Symbols on SU(2) Group, Deformations, and Tomographic Probability Distribution , 2000 .
[20] R. Mills. Classical Quantum Mechanics , 2003 .
[21] Y. Kano,et al. A NEW PHASE-SPACE DISTRIBUTION FUNCTION IN THE STATISTICAL THEORY OF THE ELECTROMAGNETIC FIELD , 1965 .
[22] E. Teller,et al. Bemerkungen zur Quantenmechanik des anharmonischen Oszillators , 1933 .
[23] Lyapunov exponent in quantum mechanics a phase-space approach , 2000, quant-ph/0002049.
[24] V. I. Man'ko,et al. Symplectic tomography as classical approach to quantum systems , 1996 .
[25] G. Scolarici,et al. THE QUANTUM-CLASSICAL TRANSITION: THE FATE OF THE COMPLEX STRUCTURE , 2005, hep-th/0501094.
[26] V. I. Man'ko,et al. Classical Mechanics Is not the ħ, → 0 Limit of Quantum Mechanics , 2004 .
[27] I. Malkin,et al. EVEN AND ODD COHERENT STATES AND EXCITATIONS OF A SINGULAR OSCILLATOR , 1974 .
[28] Chiu,et al. Generalized uncertainty relations and characteristic invariants for the multimode states. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[29] E. Sudarshan. Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams , 1963 .
[30] E. Sudarshan,et al. Entanglement in probability representation of quantum states and tomographic criterion of separability , 2004 .
[31] Daniel F. Styer,et al. Nine formulations of quantum mechanics , 2002 .
[32] John B. Shoven,et al. I , Edinburgh Medical and Surgical Journal.
[33] E. Wigner. On the quantum correction for thermodynamic equilibrium , 1932 .