Tomograms in the quantum–classical transition

Abstract The quantum–classical limits for quantum tomograms are studied and compared with the corresponding classical tomograms, using two different definitions for the limit. One is the Planck limit where ℏ → 0 in all ℏ -dependent physical observables, and the other is the Ehrenfest limit where ℏ → 0 while keeping constant the mean value of the energy. The Ehrenfest limit of eigenstate tomograms for a particle in a box and a harmonic oscillator is shown to agree with the corresponding classical tomograms of phase-space distributions, after a time averaging. The Planck limit of superposition state tomograms of the harmonic oscillator demonstrates the decreasing contribution of interference terms as ℏ → 0 .

[1]  Olga V. Man'ko,et al.  Quantum states in probability representation and tomography , 1997 .

[2]  M. Markov Invariants and the evolution of nonstationary quantum systems , 1989 .

[3]  Erwin Schrödinger,et al.  Quantisierung als Eigenwertproblem , 1925 .

[4]  W. Heisenberg Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik , 1927 .

[5]  Jorge V. José,et al.  Chaos in classical and quantum mechanics , 1990 .

[6]  Vladimir I. Man’ko,et al.  GENERALIZED UNCERTAINTY RELATION AND CORRELATED COHERENT STATES , 1980 .

[7]  M. A. Man'ko,et al.  Quasidistributions, tomography, and fractional Fourier transform in signal analysis , 2000 .

[8]  E. Schrödinger Die gegenwärtige Situation in der Quantenmechanik , 1935, Naturwissenschaften.

[9]  곽순섭,et al.  Generalized Functions , 2006, Theoretical and Mathematical Physics.

[10]  Classical-like description of quantum dynamics by means of symplectic tomography , 1996, quant-ph/9609026.

[11]  Alternative commutation relations, star products and tomography , 2001, quant-ph/0112110.

[12]  R. Glauber Coherent and incoherent states of the radiation field , 1963 .

[13]  L. Landau Das Dämpfungsproblem in der Wellenmechanik , 1927 .

[14]  R. Feynman,et al.  Space-Time Approach to Non-Relativistic Quantum Mechanics , 1948 .

[15]  J. E. Moyal Quantum mechanics as a statistical theory , 1949, Mathematical Proceedings of the Cambridge Philosophical Society.

[16]  Stefano Mancini,et al.  Wigner function and probability distribution for shifted and squeezed quadratures , 1995 .

[17]  P. Lugol Annalen der Physik , 1906 .

[18]  Interference and entanglement: An intrinsic approach , 2002, quant-ph/0207033.

[19]  V. Man'ko,et al.  Star-Product of Generalized Wigner-Weyl Symbols on SU(2) Group, Deformations, and Tomographic Probability Distribution , 2000 .

[20]  R. Mills Classical Quantum Mechanics , 2003 .

[21]  Y. Kano,et al.  A NEW PHASE-SPACE DISTRIBUTION FUNCTION IN THE STATISTICAL THEORY OF THE ELECTROMAGNETIC FIELD , 1965 .

[22]  E. Teller,et al.  Bemerkungen zur Quantenmechanik des anharmonischen Oszillators , 1933 .

[23]  Lyapunov exponent in quantum mechanics a phase-space approach , 2000, quant-ph/0002049.

[24]  V. I. Man'ko,et al.  Symplectic tomography as classical approach to quantum systems , 1996 .

[25]  G. Scolarici,et al.  THE QUANTUM-CLASSICAL TRANSITION: THE FATE OF THE COMPLEX STRUCTURE , 2005, hep-th/0501094.

[26]  V. I. Man'ko,et al.  Classical Mechanics Is not the ħ, → 0 Limit of Quantum Mechanics , 2004 .

[27]  I. Malkin,et al.  EVEN AND ODD COHERENT STATES AND EXCITATIONS OF A SINGULAR OSCILLATOR , 1974 .

[28]  Chiu,et al.  Generalized uncertainty relations and characteristic invariants for the multimode states. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[29]  E. Sudarshan Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams , 1963 .

[30]  E. Sudarshan,et al.  Entanglement in probability representation of quantum states and tomographic criterion of separability , 2004 .

[31]  Daniel F. Styer,et al.  Nine formulations of quantum mechanics , 2002 .

[32]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[33]  E. Wigner On the quantum correction for thermodynamic equilibrium , 1932 .