deBGR: an efficient and near-exact representation of the weighted de Bruijn graph
暂无分享,去创建一个
Michael A. Bender | Prashant Pandey | Rob Johnson | Robert Patro | M. A. Bender | P. Pandey | Rob Johnson | Robert Patro
[1] Páll Melsted,et al. Efficient counting of k-mers in DNA sequences using a bloom filter , 2011, BMC Bioinformatics.
[2] Qingpeng Zhang,et al. These Are Not the K-mers You Are Looking For: Efficient Online K-mer Counting Using a Probabilistic Data Structure , 2013, PloS one.
[3] Graham Cormode,et al. An improved data stream summary: the count-min sketch and its applications , 2004, J. Algorithms.
[4] Pavel A Pevzner,et al. How to apply de Bruijn graphs to genome assembly. , 2011, Nature biotechnology.
[5] Michael A. Bender,et al. A General-Purpose Counting Filter: Making Every Bit Count , 2017, SIGMOD Conference.
[6] Gregory Kucherov,et al. Using Cascading Bloom Filters to Improve the Memory Usage for de Brujin Graphs , 2013, WABI.
[7] Michael A. Bender,et al. Squeakr: An Exact and Approximate k-mer Counting System , 2017 .
[8] Michael A. Bender,et al. Don't Thrash: How to Cache Your Hash on Flash , 2011, Proc. VLDB Endow..
[9] Martin Vingron,et al. Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels , 2012, Bioinform..
[10] Jonas S. Almeida,et al. Alignment-free sequence comparison-a review , 2003, Bioinform..
[11] Arend Hintze,et al. Scaling metagenome sequence assembly with probabilistic de Bruijn graphs , 2011, Proceedings of the National Academy of Sciences.
[12] Esko Ukkonen,et al. Accurate self-correction of errors in long reads using de Bruijn graphs , 2016, Bioinform..
[13] N. Friedman,et al. Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data , 2011, Nature Biotechnology.
[14] Darya Filippova,et al. Improving Bloom Filter Performance on Sequence Data Using k -mer Bloom Filters , 2016, RECOMB.
[15] Cheng Soon Ong,et al. kWIP: The k-mer Weighted Inner Product, a de novo Estimator of Genetic Similarity , 2016 .
[16] Steven J. M. Jones,et al. Abyss: a Parallel Assembler for Short Read Sequence Data Material Supplemental Open Access , 2022 .
[17] Rita Casadio,et al. Algorithms in Bioinformatics, 5th International Workshop, WABI 2005, Mallorca, Spain, October 3-6, 2005, Proceedings , 2005, WABI.
[18] Leping Li,et al. ART: a next-generation sequencing read simulator , 2012, Bioinform..
[19] Rayan Chikhi,et al. Space-efficient and exact de Bruijn graph representation based on a Bloom filter , 2012, Algorithms for Molecular Biology.
[20] Paul Medvedev,et al. On the representation of de Bruijn graphs , 2014, RECOMB.
[21] Ting Yu,et al. BinPacker: Packing-Based De Novo Transcriptome Assembly from RNA-seq Data , 2016, PLoS Comput. Biol..
[22] Bin Fan,et al. Cuckoo Filter: Practically Better Than Bloom , 2014, CoNEXT.
[23] E. Birney,et al. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. , 2008, Genome research.
[24] Marco Previtali,et al. Fully Dynamic de Bruijn Graphs , 2016, SPIRE.
[25] Gabriel Goldstein,et al. Improved assembly of noisy long reads by k-mer validation , 2016, bioRxiv.
[26] Kayvon Mazooji,et al. Shannon: An Information-Optimal de Novo RNA-Seq Assembler , 2016, bioRxiv.
[27] Kunihiko Sadakane,et al. Succinct de Bruijn Graphs , 2012, WABI.
[28] Burton H. Bloom,et al. Space/time trade-offs in hash coding with allowable errors , 1970, CACM.
[29] P. Pevzner,et al. An Eulerian path approach to DNA fragment assembly , 2001, Proceedings of the National Academy of Sciences of the United States of America.
[30] Xiuzhen Huang,et al. Bridger: a new framework for de novo transcriptome assembly using RNA-seq data , 2015, Genome Biology.
[31] Carl Kingsford,et al. Fast Search of Thousands of Short-Read Sequencing Experiments , 2015, Nature Biotechnology.
[32] S. Koren,et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation , 2016, bioRxiv.