Convergence and Optimality of Adaptive Least Squares Finite Element Methods

The first-order div least squares finite element methods (LSFEMs) allow for an immediate a posteriori error control by the computable residual of the least squares functional. This paper establishes an adaptive refinement strategy based on some equivalent refinement indicators. Since the first-order div LSFEM measures the flux errors in $H$(div), the data resolution error measures the $L^2$ norm of the right-hand side $f$ minus the piecewise polynomial approximation $\Pi f$ without a mesh-size factor. Hence the data resolution term is neither an oscillation nor of higher order and consequently requires a particular treatment, e.g., by the thresholding second algorithm due to Binev and DeVore. The resulting novel adaptive LSFEM with separate marking converges with optimal rates relative to the notion of a nonlinear approximation class.

[1]  Lei Tang,et al.  Efficiency Based Adaptive Local Refinement for First-Order System Least-Squares Formulations , 2011, SIAM J. Sci. Comput..

[2]  Christian Kreuzer,et al.  Quasi-Optimal Convergence Rate for an Adaptive Finite Element Method , 2008, SIAM J. Numer. Anal..

[3]  Carsten Carstensen,et al.  An optimal adaptive mixed finite element method , 2011, Math. Comput..

[4]  L. D. Marini An Inexpensive Method for the Evaluation of the Solution of the Lowest Order Raviart–Thomas Mixed Method , 1985 .

[5]  D. Arnold,et al.  Mixed and nonconforming finite element methods : implementation, postprocessing and error estimates , 1985 .

[6]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[7]  R. Nochetto,et al.  Theory of adaptive finite element methods: An introduction , 2009 .

[8]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[9]  Wolfgang Dahmen,et al.  Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.

[10]  Thomas A. Manteuffel,et al.  LOCAL ERROR ESTIMATES AND ADAPTIVE REFINEMENT FOR FIRST-ORDER SYSTEM LEAST SQUARES (FOSLS) , 1997 .

[11]  Susanne C. Brenner,et al.  Two-level additive Schwarz preconditioners for nonconforming finite element methods , 1996, Math. Comput..

[12]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[13]  Ronald A. DeVore,et al.  Fast computation in adaptive tree approximation , 2004, Numerische Mathematik.

[14]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[15]  Pavel B. Bochev,et al.  Least-Squares Finite Element Methods , 2009, Applied mathematical sciences.

[16]  Rob P. Stevenson,et al.  Optimality of a Standard Adaptive Finite Element Method , 2007, Found. Comput. Math..

[17]  Gerhard Starke,et al.  An Adaptive Least-Squares Mixed Finite Element Method for Elasto-Plasticity , 2007, SIAM J. Numer. Anal..

[18]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .

[19]  Carsten Carstensen,et al.  Comparison Results of Finite Element Methods for the Poisson Model Problem , 2012, SIAM J. Numer. Anal..

[20]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[21]  Carsten Carstensen,et al.  Error reduction and convergence for an adaptive mixed finite element method , 2006, Math. Comput..

[22]  Brigitte Maier,et al.  Mixed And Hybrid Finite Element Methods Springer Series In Computational Mathematics , 2016 .

[23]  R. Hoppe,et al.  A review of unified a posteriori finite element error control , 2012 .

[24]  Dietrich Braess Finite Elements: Introduction , 2007 .