Universal emergence of PageRank

The PageRank algorithm enables us to rank the nodes of a network through a specific eigenvector of the Google matrix, using a damping parameter α ∈ ]0, 1[. Using extensive numerical simulations of large web networks, with a special accent on British University networks, we determine numerically and analytically the universal features of the PageRank vector at its emergence when α → 1. The whole network can be divided into a core part and a group of invariant subspaces. For α → 1, PageRank converges to a universal power-law distribution on the invariant subspaces whose size distribution also follows a universal power law. The convergence of PageRank at α → 1 is controlled by eigenvalues of the core part of the Google matrix, which are extremely close to unity, leading to large relaxation times as, for example, in spin glasses.

[1]  Klaus M. Frahm,et al.  Ulam method for the Chirikov standard map , 2010, 1004.1349.

[2]  Debora Donato,et al.  Large scale properties of the Webgraph , 2004 .

[3]  A. Barabasi,et al.  Percolation in directed scale-free networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  Eric A Sobie,et al.  An Introduction to Dynamical Systems , 2011, Science Signaling.

[5]  Eli Upfal,et al.  Using PageRank to Characterize Web Structure , 2002, Internet Math..

[6]  Wojciech T. Bruzda,et al.  Universality of spectra for interacting quantum chaotic systems. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  S. Serra-Capizzano Jordan Canonical Form of the Google Matrix: A Potential Contribution to the PageRank Computation , 2005 .

[8]  Sebastiano Vigna,et al.  PageRank: Functional dependencies , 2009, TOIS.

[9]  S. Redner Citation statistics from 110 years of physical review , 2005, physics/0506056.

[10]  T. Guhr,et al.  RANDOM-MATRIX THEORIES IN QUANTUM PHYSICS : COMMON CONCEPTS , 1997, cond-mat/9707301.

[11]  Dima Shepelyansky,et al.  Delocalization transition for the Google matrix , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Dima Shepelyansky,et al.  Two-dimensional ranking of Wikipedia articles , 2010, ArXiv.

[13]  Amy Nicole Langville,et al.  Google's PageRank and beyond - the science of search engine rankings , 2006 .

[14]  C. M. Place,et al.  An Introduction to Dynamical Systems , 1990 .

[15]  Santo Fortunato,et al.  Diffusion of scientific credits and the ranking of scientists , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  Karol Życzkowski,et al.  Random quantum operations , 2008, 0804.2361.

[17]  Konstantin Avrachenkov,et al.  Distribution of PageRank Mass Among Principle Components of the Web , 2007, WAW.

[18]  Filippo Radicchi,et al.  Who Is the Best Player Ever? A Complex Network Analysis of the History of Professional Tennis , 2011, PloS one.

[19]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[20]  G. Stewart Matrix Algorithms, Volume II: Eigensystems , 2001 .

[21]  Carl T. Bergstrom,et al.  The Eigenfactor MetricsTM: A Network Approach to Assessing Scholarly Journals , 2010, Coll. Res. Libr..

[22]  Alexei Chepelianskii,et al.  Towards physical laws for software architecture , 2010, ArXiv.

[23]  Werner R. W. Scheinhardt,et al.  Probabilistic Relation between In-Degree and PageRank , 2007, WAW.

[24]  James Hendler,et al.  Google’s PageRank and Beyond: The Science of Search Engine Rankings , 2007 .

[25]  G. Golub,et al.  An Arnoldi-type algorithm for computing page rank , 2006 .