On Ciric maps with a generalized contractive iterate at a point and Fisher's quasi-contractions in cone metric spaces

In this paper, we generalize and unify some results of Sehgal and Guseman, and Ciric's theorem for mappings with a generalized contractive iterate at a point to cone metric spaces, in which the cone does not need to be normal. As corollaries, we obtain recent results of Huang and Zhang, and Raja and Vaezpour. Furthermore, we introduce the definition of Fisher quasi-contractions on cone metric spaces and study their properties. Among other things, using new method of proof, we solve the open problem for the interval of contractive constant @l of (Ciric) quasi-contraction in non-normal cone metric spaces, and as sn immediate corollary, we recover the recent result of Rezapour and Hamlbarani.

[1]  Vladimir Rakocevic,et al.  Quasi-contraction on a cone metric space , 2009, Appl. Math. Lett..

[2]  G. Jungck,et al.  Common Fixed Point Theorems for Weakly Compatible Pairs on Cone Metric Spaces , 2009 .

[3]  Cristina Di Bari,et al.  ϕ-pairs and common fixed points in cone metric spaces , 2008 .

[4]  V. Sehgal,et al.  A fixed point theorem for mappings with a contractive iterate , 1969 .

[5]  Brian Fisher Quasi-Contractions on Metric Spaces , 1979 .

[6]  Vladimir Rakočević,et al.  Common fixed points for maps on cone metric space , 2008 .

[7]  S. Rezapour,et al.  Some notes on the paper "Cone metric spaces and fixed point theorems of contractive mappings" , 2008 .

[8]  P. P. Zabrejko K-metric and K-normed linear spaces: survey. , 1997 .

[9]  Xian Zhang,et al.  Cone metric spaces and fixed point theorems of contractive mappings , 2007 .

[10]  Mujahid Abbas,et al.  Common fixed point results for noncommuting mappings without continuity in cone metric spaces , 2008 .

[11]  L. F. Guseman,et al.  Fixed point theorems for mappings with a contractive iterate at a point , 1970 .

[12]  Mujahid Abbas,et al.  Fixed and periodic point results in cone metric spaces , 2009, Appl. Math. Lett..

[13]  K. Deimling Nonlinear functional analysis , 1985 .

[14]  Seiyed Mansour Vaezpour,et al.  Some Extensions of Banach's Contraction Principle in Complete Cone Metric Spaces , 2008 .

[15]  Pasquale Vetro,et al.  Common fixed points in cone metric spaces , 2007 .

[16]  L. Ciric,et al.  A generalization of Banach’s contraction principle , 1974 .

[17]  S. Banach Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales , 1922 .

[18]  Stojan Radenovic,et al.  Remarks on "Quasi-contraction on a cone metric space" , 2009, Appl. Math. Lett..