Correction: Anion-driven tetrel bond-induced engineering of lead(ii) architectures with N′-(1-(2-pyridyl)ethylidene)nicotinohydrazide: experimental and theoretical findings

Correction for ‘Anion-driven tetrel bond-induced engineering of lead(ii) architectures with N′-(1-(2-pyridyl)ethylidene)nicotinohydrazide: experimental and theoretical findings’ by Ghodrat Mahmoudi et al., Inorg. Chem. Front., 2017, 4, 171–182, https://doi.org/10.1039/C6QI00477F

[1]  Eliandro Faoro,et al.  Intermolecular Pb...N interactions in lead(II) dimers producing a supramolecular two-dimensional metal-organic compound: bis[μ2-N'-(2-oxidobenzylidene)benzohydrazidato-κ(4)O:O,N',O']dilead(II). , 2016, Acta crystallographica. Section C, Structural chemistry.

[2]  J. Mague,et al.  On the importance of tetrel bonding interactions in lead(ii) complexes with (iso)nicotinohydrazide based ligands and several anions. , 2016, Dalton transactions.

[3]  C. Ruiz-Pérez,et al.  Inorganic–organic hybrid materials based on PbBr2 and pyridine–hydrazone blocks – structural and theoretical study , 2016 .

[4]  A. Frontera,et al.  Concurrent agostic and tetrel bonding interactions in lead(ii) complexes with an isonicotinohydrazide based ligand and several anions. , 2016, Dalton transactions.

[5]  Weizhou Wang,et al.  σ-Hole Bond vs π-Hole Bond: A Comparison Based on Halogen Bond. , 2016, Chemical reviews.

[6]  A. Frontera,et al.  Tetrel Bonding Interactions. , 2016, Chemical record.

[7]  Pierangelo Metrangolo,et al.  The Halogen Bond , 2016, Chemical reviews.

[8]  S. Ng,,et al.  Design of Lead(II) Metal-Organic Frameworks Based on Covalent and Tetrel Bonding. , 2015, Chemistry.

[9]  Antonio Bauzá,et al.  The bright future of unconventional σ/π-hole interactions. , 2015, Chemphyschem : a European journal of chemical physics and physical chemistry.

[10]  P. Ballester,et al.  Nature of noncovalent carbon-bonding interactions derived from experimental charge-density analysis. , 2015, Chemphyschem : a European journal of chemical physics and physical chemistry.

[11]  S. Scheiner,et al.  Chalcogen bonds in complexes of SOXY (X, Y = F, Cl) with nitrogen bases. , 2015, The journal of physical chemistry. A.

[12]  S. Scheiner,et al.  Chalcogen bonding between tetravalent SF4 and amines. , 2014, The journal of physical chemistry. A.

[13]  A. Frontera,et al.  Non-covalent sp(3) carbon bonding with ArCF3 is analogous to CH-π interactions. , 2014, Chemical communications.

[14]  A. Frontera,et al.  Influence of ring size on the strength of carbon bonding complexes between anions and perfluorocycloalkanes. , 2014, Physical chemistry chemical physics : PCCP.

[15]  A. Frontera,et al.  Small cycloalkane (CN)2C-C(CN)2 structures are highly directional non-covalent carbon-bond donors. , 2014, Chemistry.

[16]  G. Desiraju,et al.  Halogen bonds in crystal engineering: like hydrogen bonds yet different. , 2014, Accounts of chemical research.

[17]  S. Scheiner,et al.  Effects of charge and substituent on the S···N chalcogen bond. , 2014, The journal of physical chemistry. A.

[18]  Mehdi D. Esrafili,et al.  A theoretical evidence for mutual influence between S···N(C) and hydrogen/lithium/halogen bonds: competition and interplay between π-hole and σ-hole interactions , 2014, Structural Chemistry.

[19]  P. Ramamurthy,et al.  A Donor–Acceptor–Donor Structured Organic Conductor with S···S Chalcogen Bonding , 2014 .

[20]  S. J. Grabowski Tetrel bond-σ-hole bond as a preliminary stage of the SN2 reaction. , 2014, Physical chemistry chemical physics : PCCP.

[21]  Antonio Bauzá,et al.  Tetrel-bonding interaction: rediscovered supramolecular force? , 2013, Angewandte Chemie.

[22]  J. Murray,et al.  Trends in σ-hole strengths and interactions of F3MX molecules (M = C, Si, Ge and X = F, Cl, Br, I) , 2013, Journal of Molecular Modeling.

[23]  Timothy Clark,et al.  Halogen bonding and other σ-hole interactions: a perspective. , 2013, Physical chemistry chemical physics : PCCP.

[24]  P. K. Bharadwaj,et al.  Gas storage in a partially fluorinated highly stable three-dimensional porous metal-organic framework. , 2013, Inorganic chemistry.

[25]  Sławomir J Grabowski,et al.  Hydrogen and halogen bonds are ruled by the same mechanisms. , 2013, Physical chemistry chemical physics : PCCP.

[26]  Steve Scheiner,et al.  The pnicogen bond: its relation to hydrogen, halogen, and other noncovalent bonds. , 2013, Accounts of chemical research.

[27]  P. Metrangolo,et al.  Metal-bound halogen atoms in crystal engineering. , 2013, Chemical communications.

[28]  Suning Wang,et al.  Luminescent triarylboron-functionalized zinc carboxylate metal-organic framework. , 2013, Inorganic chemistry.

[29]  Man Zhou,et al.  In situ synthesis and ferroelectric, SHG response, and luminescent properties of a novel 3D acentric zinc coordination polymer. , 2013, Inorganic chemistry.

[30]  M. Dincǎ,et al.  Conformational locking by design: relating strain energy with luminescence and stability in rigid metal-organic frameworks. , 2012, Journal of the American Chemical Society.

[31]  Sandeep K. Reddy,et al.  Unusual room temperature CO2 uptake in a fluoro-functionalized MOF: insight from Raman spectroscopy and theoretical studies. , 2012, Chemical communications.

[32]  P. Metrangolo,et al.  Enzyme mimics: halogen and chalcogen team up. , 2012, Nature chemistry.

[33]  X. Xuan,et al.  The assessment and application of an approach to noncovalent interactions: the energy decomposition analysis (EDA) in combination with DFT of revised dispersion correction (DFT-D3) with Slater-type orbital (STO) basis set , 2012, Journal of Molecular Modeling.

[34]  Hong-Cai Zhou,et al.  Metal-organic frameworks for separations. , 2012, Chemical reviews.

[35]  Yanfeng Yue,et al.  Luminescent functional metal-organic frameworks. , 2012, Chemical Reviews.

[36]  J. Hupp,et al.  Urea metal-organic frameworks as effective and size-selective hydrogen-bond catalysts. , 2012, Journal of the American Chemical Society.

[37]  P. K. Bharadwaj,et al.  Syntheses, Crystal Structures, and Magnetic Properties of Metal–Organic Hybrid Materials of Co(II) Using Flexible and Rigid Nitrogen-Based Ditopic Ligands as Spacers , 2012 .

[38]  Abhijeet K. Chaudhari,et al.  Selective CO2 adsorption in a robust and water-stable porous coordination polymer with new network topology. , 2012, Inorganic chemistry.

[39]  Song Gao,et al.  Coexistence of magnetic and electric orderings in the metal-formate frameworks of [NH4][M(HCOO)3]. , 2011, Journal of the American Chemical Society.

[40]  Barbara Kirchner,et al.  Pnicogen bonds: a new molecular linker? , 2011, Chemistry.

[41]  R. Banerjee,et al.  Structural, magnetic, and gas adsorption study of a series of partially fluorinated metal-organic frameworks (HF-MOFs). , 2011, Inorganic chemistry.

[42]  P. K. Bharadwaj,et al.  Three-dimensional porous Cd(II) coordination polymer with large one-dimensional hexagonal channels: high pressure CH4 and H2 adsorption studies. , 2011, Inorganic chemistry.

[43]  Timothy Clark,et al.  Directional Weak Intermolecular Interactions: σ-Hole Bonding , 2010 .

[44]  Jianping Ma,et al.  Adsorption and separation of organic six-membered ring analogues on neutral Cd(II)-MOF generated from asymmetric schiff-base ligand. , 2010, Inorganic chemistry.

[45]  Wenbin Lin,et al.  A series of isoreticular chiral metal-organic frameworks as a tunable platform for asymmetric catalysis. , 2010, Nature chemistry.

[46]  G. Cavallo,et al.  Halogen bonding: a general route in anion recognition and coordination. , 2010, Chemical Society reviews.

[47]  Di Sun,et al.  Encapsulated Diverse Water Aggregates in Two Ag(I)/4,4 '-Bipyridine/Dicarboxylate Hosts: 1D Water Tape and Chain , 2010 .

[48]  Oren A Scherman,et al.  Chemical complexity--supramolecular self-assembly of synthetic and biological building blocks in water. , 2010, Chemical Society reviews.

[49]  Qiang Xu,et al.  Non-, micro-, and mesoporous metal-organic framework isomers: reversible transformation, fluorescence sensing, and large molecule separation. , 2010, Journal of the American Chemical Society.

[50]  S. Ng,,et al.  Effect of N-donor auxiliary ligands on the engineering of crystalline architectures of a series of lead(II) complexes with 5-amino-2,4,6-triiodoisophthalic acid , 2010 .

[51]  M. Swart,et al.  Adenine versus guanine quartets in aqueous solution: dispersion-corrected DFT study on the differences in π-stacking and hydrogen-bonding behavior , 2010 .

[52]  P. K. Bharadwaj,et al.  Synthesis, Structure, and Magnetic Properties of Cobalt(II) Coordination Polymers from a New Tripodal Carboxylate Ligand: Weak Ferromagnetism and Metamagnetism , 2010 .

[53]  J. Baruah,et al.  Solvent induced reactivity of 3,5-dimethylpyrazole towards zinc (II) carboxylates. , 2009, Dalton transactions.

[54]  Lijuan Li,et al.  Conformation preference of a flexible cyclohexanetetracarboxylate ligand in three new metal-organic frameworks: structures, magnetic and luminescent properties. , 2009, Inorganic chemistry.

[55]  P. K. Bharadwaj,et al.  A porous coordination polymer exhibiting reversible single-crystal to single-crystal substitution reactions at Mn(II) centers by nitrile guest molecules. , 2009, Journal of the American Chemical Society.

[56]  Yu Zhang,et al.  Chalcogen bond: a sister noncovalent bond to halogen bond. , 2009, The journal of physical chemistry. A.

[57]  Nathaniel L Rosi,et al.  Cation-triggered drug release from a porous zinc-adeninate metal-organic framework. , 2009, Journal of the American Chemical Society.

[58]  Peter Politzer,et al.  Expansion of the σ-hole concept , 2009, Journal of molecular modeling.

[59]  M. Swart,et al.  A ditopic ion-pair receptor based on stacked nucleobase quartets. , 2009, Angewandte Chemie.

[60]  Artur Michalak,et al.  A Combined Charge and Energy Decomposition Scheme for Bond Analysis. , 2009, Journal of chemical theory and computation.

[61]  Yun-xia Che,et al.  Trinuclear Cobalt Based Porous Coordination Polymers Showing Unique Topological and Magnetic Variety upon Different Dicarboxylate-like Ligands , 2009 .

[62]  Yi-zhi Li,et al.  Synthesis, X-ray Structures, and Fluorescent Properties of Coordination Networks Constructed from 2-(2-Pyridinyl-benzimidazolyl) Acetic Anion , 2009 .

[63]  V. Stavila,et al.  Stereochemistry of lead(II) complexes with oxygen donor ligands , 2008 .

[64]  C. Macrae,et al.  Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures , 2008 .

[65]  Artur Michalak,et al.  Bond orbitals from chemical valence theory. , 2008, The journal of physical chemistry. A.

[66]  Tai Xi-Shi,et al.  N′-[1-(2-Pyridyl)ethylidene]nicotinohydrazide , 2007, Acta crystallographica. Section E, Structure reports online.

[67]  H. Fun,et al.  Synthesis and Crystal Structure of a Novel Polymeric Lead(II) Compound: [Pb2(phen)2(N3)3(ClO4)]n , 2007 .

[68]  M. Balakrishna,et al.  Chemistry of pnictogen(III)-nitrogen ring systems. , 2007, Chemical Society reviews.

[69]  D. Reinhoudt,et al.  Supramolecular chemistry in water. , 2007, Angewandte Chemie.

[70]  Artur Michalak,et al.  Natural orbitals for chemical valence as descriptors of chemical bonding in transition metal complexes , 2007, Journal of molecular modeling.

[71]  Horst Köppel,et al.  Theoretical investigations on chalcogen-chalcogen interactions: what makes these nonbonded interactions bonding? , 2006, Journal of the American Chemical Society.

[72]  R. Wright,et al.  Terphenyl ligand stabilized lead(II) derivatives: steric effects and lead-lead bonding in diplumbenes. , 2004, Inorganic chemistry.

[73]  Harald Hofmeier,et al.  Recent developments in the supramolecular chemistry of terpyridine-metal complexes. , 2004, Chemical Society reviews.

[74]  B. Bosnich,et al.  Principles of mononucleating and binucleating ligand design. , 2004, Chemical reviews.

[75]  A. Morsali,et al.  Syntheses and Characterization of Mixed‐Anions Lead(II) Complexes, [Pb(phen)2(CH3COO)]X (X=NCS—, NO3— and ClO4—), Crystal Structure of [Pb(phen)2(CH3COO)](ClO4) , 2003 .

[76]  Shuji Tomoda,et al.  Statistical and theoretical investigations on the directionality of nonbonded S...O interactions. Implications for molecular design and protein engineering. , 2002, Journal of the American Chemical Society.

[77]  F. Matthias Bickelhaupt,et al.  Chemistry with ADF , 2001, J. Comput. Chem..

[78]  P. Metrangolo,et al.  Halogen bonding: a paradigm in supramolecular chemistry. , 2001, Chemistry.

[79]  J. Glusker,et al.  Lone Pair Functionality in Divalent Lead Compounds , 1998 .

[80]  F. Caruso,et al.  A Short Pb.Pb Separation in the Polymeric Compound Bis(pyrrolidinecarbodithioato)lead(II) and a Conformational Pathway Interconversion for the "Pb(II)S(4)" Framework. , 1997, Inorganic chemistry.

[81]  Giovanni Luca Cascarano,et al.  Completion and refinement of crystal structures with SIR92 , 1993 .

[82]  G. Desiraju,et al.  The nature of halogen.cntdot..cntdot..cntdot.halogen interactions: are short halogen contacts due to specific attractive forces or due to close packing of nonspherical atoms? , 1989 .

[83]  G. Meyer,et al.  Subtle Interplay of Weak Intermolecular Interactions. Crystal Structures of Lead(II) Complexes with 4,4′-Dimethyl-2,2′-bipyridine , 2009 .

[84]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.