Photocatalytic Based Degradation Processes of Lignin Derivatives

Photocatalysis, belonging to the advanced oxidation processes (AOPs), is a potential new transformation technology for lignin derivatives to value added products (e.g., phenol, benzene, toluene, and xylene). Moreover, lignin represents the only viable source to produce aromatic compounds as fossil fuel alternative. This review covers recent advancement made in the photochemical transformation of industrial lignins. It starts with the photochemical reaction principle followed by results obtained by varying process parameters. In this context, influences of photocatalysts, metal ions, additives, lignin concentration, and illumination intensity and the influence of pH are presented and discussed. Furthermore, an overview is given on several used process analytical methods describing the results obtained from the degradation of lignin derivatives. Finally, a promising concept by coupling photocatalysis with a consecutive biocatalytic process was briefly reviewed.

[1]  H. Nimz DAS LIGNIN DER BUCHE - ENTWURF EINES KONSTITUTIONSSCHEMAS , 1974 .

[2]  R. W. Matthews Response to the comment. "Photocatalytic reactor design: an example of mass-transfer limitations with an immobilized catalyst" , 1988 .

[3]  M. Tien,et al.  Lignin-degrading enzyme from Phanerochaete chrysosporium: Purification, characterization, and catalytic properties of a unique H(2)O(2)-requiring oxygenase. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[4]  W. Marsden I and J , 2012 .

[5]  André M. Braun,et al.  Photochemical processes for water treatment , 1993 .

[6]  M. Tien,et al.  Ligninase of Phanerochaete chrysosporium. Mechanism of its degradation of the non-phenolic arylglycerol beta-aryl ether substructure of lignin. , 1986, The Biochemical journal.

[7]  E. Portjanskaja,et al.  Aqueous Photocatalytic Oxidation of Lignin: The Influence of Mineral Admixtures , 2007 .

[8]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[9]  M. Aoyama,et al.  Solventless Delignification of Wood Flour with TiO2/poly(ethylene oxide) Photocatalyst System , 2013, Journal of Polymers and the Environment.

[10]  L. Avérous,et al.  Antioxidant properties of lignin in polypropylene , 2003 .

[11]  G. Miksche,et al.  Gaschromatographische Analyse von Ligninoxydationsprodukten. VIII. Zur Struktur des Lignins der Fichte. , 1971 .

[12]  P. Czermak,et al.  Photocatalytic Active Coatings for Lignin Degradation in a Continuous Packed Bed Reactor , 2014 .

[13]  Wolfgang G. Glasser,et al.  Recent Industrial Applications of Lignin: A Sustainable Alternative to Nonrenewable Materials , 2002 .

[14]  J. Háfren,et al.  Changes in Cell Wall Architecture of Differentiating Tracheids of Pinus thunbergii during Lignification , 1999 .

[15]  H. Schoemaker,et al.  The oxidation of veratryl alcohol, dimeric lignin models and lignin by lignin peroxidase: The redox cycle revisited , 1994 .

[16]  Koji Takeuchi,et al.  Preparation of the TiO2 Thin Film Photocatalyst by the Dip-Coating Process , 1998 .

[17]  M. Sarakha,et al.  The aqueous photochemistry of 2,6-dimethylphenol. Evidence for the fragmentation of the α C-C bond , 1998 .

[18]  S. Grelier,et al.  Comparative study of stone-ground wood pulp and native wood 3. Application of fluorescence spectroscopy to a study of the weathering of stone-ground pulp and native wood , 1994 .

[19]  G. Bonn,et al.  GC-MS and HPLC analyses of lignin degradation products in biomass hydrolyzates , 1986 .

[20]  N. Bhardwaj,et al.  Photocatalytic oxidation of elemental chlorine free bleaching effluent with UV / TiO 2 , 2022 .

[21]  J. Moser,et al.  Charge Carrier Trapping and Recombination Dynamics in Small Semiconductor Particles. , 1986 .

[22]  Stephen Y. Lin,et al.  Methods in Lignin Chemistry , 1992, Springer Series in Wood Science.

[23]  E. Jong,et al.  Co-ordination network for lignin—standardisation, production and applications adapted to market requirements (EUROLIGNIN) , 2004 .

[24]  G. Marcì,et al.  Photocatalytic thin films of TiO2 formed by a sol–gel process using titanium tetraisopropoxide as the precursor , 2008 .

[25]  A. Fujishima,et al.  TiO2 Photocatalysis: A Historical Overview and Future Prospects , 2005 .

[26]  O. Sánchez,et al.  Degradation of chlorophenols by sequential biological-advanced oxidative process using Trametes pubescens and TiO(2)/UV. , 2010, Bioresource technology.

[27]  B. Halliwell,et al.  Role of free radicals and catalytic metal ions in human disease: an overview. , 1990, Methods in enzymology.

[28]  W. Qin,et al.  Fungal biodegradation and enzymatic modification of lignin. , 2010, International journal of biochemistry and molecular biology.

[29]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[30]  Aicheng Chen,et al.  Electrochemical oxidation of lignin at lead dioxide nanoparticles photoelectrodeposited on TiO2 nanotube arrays , 2012 .

[31]  P. Czermak,et al.  Evaluation of Photocatalytic Active Coatings on Sintered Glass Tubes by Methylene Blue , 2013 .

[32]  A. Fujishima,et al.  TiO2 photocatalysis and related surface phenomena , 2008 .

[33]  N. Durán,et al.  A new alternative process for Kraft E1 effluent treatment , 1994, Biodegradation.

[34]  R. Farrell,et al.  Enzymatic "combustion": the microbial degradation of lignin. , 1987, Annual review of microbiology.

[35]  Michael Kamm,et al.  Biorefineries - industrial processes and products : status quo and future directions , 2006 .

[36]  D. Goring The physical chemistry of lignin , 1962 .

[37]  N. Serpone Relative Photonic Efficiencies and Quantum Yields in Heterogeneous Photocatalysis , 1997 .

[38]  C. Turchi,et al.  Comment. Photocatalytic reactor design: an example of mass-transfer limitations with an immobilized catalyst , 1988 .

[39]  Tatiana Dizhbite,et al.  Characterization of the radical scavenging activity of lignins--natural antioxidants. , 2004, Bioresource technology.

[40]  Michael Stöcker,et al.  Bio‐ und BTL‐Kraftstoffe in der Bioraffinerie: katalytische Umwandlung Lignocellulose‐reicher Biomasse mit porösen Stoffen , 2008 .

[41]  A. Ross,et al.  Reactivity of HO2/O−2 Radicals in Aqueous Solution , 1985 .

[42]  M. Tien,et al.  Mechanism of its degradation of the non-phenolic arylglycerol ß-aryl ether substructure of lignin , 1986 .

[43]  P. Wright,et al.  Investigating Laccase and Titanium Dioxide for Lignin Degradation , 2012 .

[44]  E. Torres,et al.  Biocatalysis based on heme peroxidases : peroxidases as potential industrial biocatalysts , 2010 .

[45]  K. Tanaka,et al.  Photocatalyzed degradation of lignin on TiO2 , 1999 .

[46]  K. Kobayakawa,et al.  Photodecomposition of Kraft Lignin Catalyzed by Titanium Dioxide , 1989 .

[47]  D. Ronze,et al.  Photocatalytic Degradation of 2-Chlorophenol in TiO2 Aqueous Suspension: Modeling of Reaction Rate , 1997 .

[48]  Huo-rong Chen,et al.  Investigation on mechanism of photocatalytic activity enhancement of nanometer cerium-doped titania , 2006 .

[49]  N. Durán,et al.  Semiconductor-assisted photodegradation of lignin, dye, and kraft effluent by Ag-doped ZnO. , 2000, Chemosphere.

[50]  T. Rao,et al.  Investigations on the photocatalytic activity of sol-gel derived plain and Fe3+/Nb5+-doped titania coatings on glass substrates , 2010 .

[51]  J. Rocha,et al.  Oxidative delignification in the presence of molybdovanadophosphate heteropolyanions: mechanism and kinetic studies , 1998 .

[52]  Yiyong Huang,et al.  Boron-based pronucleophiles in catalytic (asymmetric) C(sp3)–allyl cross-couplings , 2012 .

[53]  C. H. Chen,et al.  The influence of pH and cadmium sulfide on the photocatalytic degradation of 2-chlorophenol in titanium dioxide suspensions. , 2001, Water research.

[54]  N. Modirshahla,et al.  Kinetic study on photocatalytic degradation of C.I. Acid Yellow 23 by ZnO photocatalyst. , 2006, Journal of hazardous materials.

[55]  HighWire Press Philosophical Transactions of the Royal Society of London , 1781, The London Medical Journal.

[56]  E. de Jong,et al.  Molar mass determination of lignins by size-exclusion chromatography: towards standardisation of the method , 2007 .

[57]  N. Durán,et al.  Biomass photochemistry-XXII: Combined photochemical and biological process for treatment of Kraft El effluent , 1998 .

[58]  A. Bard,et al.  Spin trapping and electron spin resonance detection of radical intermediates in the photodecomposition of water at titanium dioxide particulate systems , 1979 .

[59]  Rl Howard,et al.  Lignocellulose biotechnology: issues of bioconversion and enzyme production , 2003 .

[60]  A. Machado,et al.  Photocatalytic degradation of lignin and lignin models, using titanium dioxide: the role of the hydroxyl radical. , 2000, Chemosphere.

[61]  R. Bauer,et al.  New Reactor Design for Photocatalytic Wastewater Treatment with TiO2 Immobilized on Fused-Silica Glass Fibers: Photomineralization of 4-Chlorophenol. , 1994, Environmental science & technology.

[62]  S. Martin,et al.  Environmental Applications of Semiconductor Photocatalysis , 1995 .

[63]  B. Halliwell,et al.  The importance of free radicals and catalytic metal ions in human diseases. , 1985, Molecular aspects of medicine.

[64]  B. Albinsson,et al.  The origin of lignin fluorescence , 1999 .

[65]  R. W. Matthews Hydroxylation reactions induced by near-ultraviolet photolysis of aqueous titanium dioxide suspensions , 1984 .

[66]  Wensheng Qin,et al.  Fungal Bioconversion of Lignocellulosic Residues; Opportunities & Perspectives , 2009, International journal of biological sciences.

[67]  M. Salkinoja-Salonen,et al.  Photochemical mineralization of synthetic lignin in lake water indicates enhanced turnover of aromatic organic matter under solar radiation , 2004, Biodegradation.

[68]  J. Yates,et al.  Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results , 1995 .

[69]  A. Chao,et al.  Photocatalytic degradation of lignin using Pt/TiO2 as the catalyst. , 2008, Chemosphere.

[70]  A. O. Allen,et al.  Mechanism of the disproportionation of superoxide radicals , 1977 .

[71]  B. Weckhuysen,et al.  The catalytic valorization of lignin for the production of renewable chemicals. , 2010, Chemical reviews.

[72]  Aicheng Chen,et al.  A novel approach for lignin modification and degradation , 2010 .

[73]  R. Ocampo-Pérez,et al.  Adsorption of Fluoride from Water Solution on Bone Char , 2007 .

[74]  G. Gellerstedt,et al.  Structural Changes in Lignin During Kraft Pulping , 1984 .

[75]  Elefteria Psillakis,et al.  Enhancement of biodegradability of industrial wastewaters by chemical oxidation pre-treatment , 2004 .

[76]  A. Castellan,et al.  A photochemical study of an O-methylated α-carbonyl β-1 lignin model dimer: 1,2-di(3′,4′-dimethoxyphenyl)ethanone (deoxyveratroin) , 1990 .

[77]  M. Kraume,et al.  Reaction Kinetics of Versatile Peroxidase for the Degradation of Lignin Compounds , 2013 .

[78]  H. Mansilla,et al.  Effect of temperature on kraft black liquor degradation by ZnO-photoassisted catalysis , 1996 .

[79]  H. Schoemaker,et al.  The role of peroxidases, radical cations and oxygen in the degradation of lignin , 1987, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[80]  M. Singh,et al.  Studies on TiO(2)/ZnO photocatalysed degradation of lignin. , 2008, Journal of hazardous materials.

[81]  M. Matsumura,et al.  Bleaching of lignin solution by a photocatalyzed reaction on semiconductor photocatalysts , 1989 .

[82]  Angel T. Martı́nez HIGH REDOX POTENTIAL PEROXIDASES , 2007 .

[83]  H. Schoemaker,et al.  Lignin peroxidase L3 from Phlebia radiata. Pre-steady-state and steady-state studies with veratryl alcohol and a non-phenolic lignin model compound 1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)propane-1,3-diol. , 1993, European journal of biochemistry.

[84]  H. Lasa,et al.  Photocatalytic reaction engineering , 2005 .

[85]  Lucia Tonucci,et al.  Mild Photocatalysed and Catalysed Green Oxidation of Lignin: A Useful Pathway to Low-Molecular-Weight Derivatives , 2012 .

[86]  R. Kinstrey An overview of strategies for reducing the environmental impact of bleach-plant effluents , 1993 .

[87]  M. Ksibi,et al.  Photodegradation of lignin from black liquor using a UV/TiO2 system , 2003 .

[88]  A. Ragauskas,et al.  Review of current and future softwood kraft lignin process chemistry , 2004 .

[89]  J. Lange Lignocellulose conversion: an introduction to chemistry, process and economics , 2007 .

[90]  Amar K. Mohanty,et al.  Lignin and Its Applications with Polymers , 2009 .